Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1238-1264    DOI: 10.11900/0412.1961.2017.00288
Orginal Article Current Issue | Archive | Adv Search |
Development and Application of Novel Biomedical Titanium Alloy Materials
Zhentao YU1,2(), Sen YU1,2, Jun CHENG1,2, Xiqun MA1,2
1 Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
2 Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
Cite this article: 

Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials. Acta Metall Sin, 2017, 53(10): 1238-1264.

Download:  HTML  PDF(5398KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Biomedical titanium alloy materials have become the main raw materials for orthopedic, dental and cardiovascular implants or devices, but their biological and mechanical compatibility remains to be improved to meet the long-term safety and function in services for clinical application. Whether developing the novel medical titanium alloys with high-strength, low-modulus and other finer comprehensive performance, or upgrading and optimizing the traditional medical titanium alloys, it is the foundation and key to ensuring the structure homogeneity, high performance, versatility and low cost of biomedical titanium alloy materials and expanding its clinical application. The design, physical metallurgy, materials process, microstructure and properties, surface modification, advanced manufacturing and the clinical application of biomedical titanium alloys were introduced, and their latest research progress was reviewed in this paper, together with the recent advances in the author's R & D team. Finally, the further research and development trend of biomedical titanium alloys are summarized.

Key words:  biomedical titanium alloy      surgical implant      biological and mechanical compatibility      alloy design      physical metallurgy      ultrafine-grained material      porous material      surface modification     
Received:  12 July 2017     
ZTFLH:  TG146.2  
  R318.08  
Fund: Supported by National Natural Science Foundation of China (No.31400821), National Key Research and Development Program of China (No.2016YFC1102003), Key Science and Technology Innovation Team of Shaanxi Province (No.2016KCT-30) and Science and Technology Achievements Transformation Project of Shaanxi Province (No.2016KTCG01-04)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00288     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1238

Alloy Yield strength Ultimate strength Elongation Reduction Elastic
MPa MPa % of area modulus
% GPa
Pure Ti (grade 1~4) 170~485 240~550 15~24 25~30 about 103
Ti-6Al-4V (annealed) 820~870 900~930 6~10 20~25 110~114
Ti-6Al-7Nb 880~950 900~1050 8~15 25~45 114
Ti-5Al-2.5Fe 895 1020 15 35 112
Ti-13Nb-13Zr (aged) 830~910 970~1040 10~16 27~53 79~84
Ti-12Mo-6Zr-2Fe 1000~1060 1060~1100 18~22 64~73 74~85
(TMZF) (annealed)
Ti-15Mo (annealed) 544 874 21 82 78
Ti-15Mo-5Zr-3Al 838 852 25 48 80
(solution treatment)
Ti-15Mo-2.8Nb-0.2Si 945~987 979~999 16~18 60 83
(annealed)
Ti-35Nb-5Ta-7Zr 547 596 19 68 55
Ti-29Nb-13Ta-4.6Zr 860 910 13 80
Ti-24Nb-4Zr-7.9Sn 800~1100 850~1150 15 42~72
(Ti2448) (aged)
TAMZ/Ti-75 (Ti-2Al-2Mo-2Zr) ≥700 ≥750 ≥12% 105
TLE (Ti-5Zr-5Mo-15Nb) 310~365 620~760 21~39 74~83 58~73
(solution treatment)
TLE (Ti-5Zr-5Mo-15Nb) (aged) 560~1020 700~1060 15~22 67~77 58~84
TLM (Ti-3Zr-2Sn-3Mo-25Nb) 275~500 660~705 21~26 75~84 53~60
(solution treatment)
TLM (Ti-3Zr-2Sn-3Mo-25Nb) (aged) 610~950 685~1050 17~23 70~71 45~81
Ti-B12 (Ti-10Mo-6Zr-4Sn-3Nb) 830~940 930~1040 14~20 66~77 53~80
(solution treatment)
Ti-B12 (Ti-10Mo-6Zr-4Sn-3Nb) 960~1130 1000~1210 9~15 33~46 81~95
(aged)
Table 1  Mechanical properties of some typical newly developed titanium alloys used for biomedical application
Project name EBCHM PCHM VAR NC CCM ESR
Material status Bulk, bar Bulk, bar Consumable Bulk Bulk Bar electrode
electrode
Ingot size Large, midsize, Large, midsize, Large, Midsize, small Midsize, small Midsize, small
small small midsize, small
End face shape of ingot Circular and Circular and Circular Circular and Circular and Circular and
dysmorphism dysmorphism dysmorphism dysmorphism dysmorphism
Deaeration effect Optimum Limited Limited Limited Limited Limited
Vacuum / Pa 0.1~0.133 Inactive gas 0.013~6.65 Inactive gas Inactive gas Inactive gas
0.133~101325 2660~3990 33250~50540
Composition control Burning Fine Easy to General Easy Unmanageable
ingredient, control, good
unmanageable
Surface quality Good Good General General General Better
Melting rate / (kgh?1) 500~1800 600~900 800~2000 300~800 400 -
Foundry returns using Larger Larger Limited Larger Limited Limited
Specific electric energy Larger Larger Smaller Larger Bigger Bigger
consume
Manipulation difficulty Hard Common Easy Common Common Common
Equipment investment Highest Higher Low Lower Common Common
Table 2  Comparisons of several vacuum melting methods
Fig.1  TNTZ (Ti-29Nb-13Ta-4.6Zr) alloy
(a) ingot (b) macrostructure (c) microstructure (d) hot rolled plate (e) as rolled microstructure
Fig.2  Ingot (a), hot rolled bar (b) and as rolled microstructure (c) of Ti-3.5Cu alloy
Nominal composition Zr Fe Si C N H O Ti
Ti-1Zr 0.98 0.01 <0.04 0.021 0.007 0.0009 0.078 Bal.
Ti-2Zr 1.98 0.01 <0.04 0.019 0.014 0.0010 0.082 Bal.
Ti-16Zr 16.30 0.02 <0.04 0.015 0.013 0.0010 0.090 Bal.
Ti-20Zr 20.90 0.01 <0.04 0.014 0.014 0.0010 0.084 Bal.
Ti-35Zr 35.71 0.03 <0.01 0.008 0.003 0.0010 0.086 Bal.
Ti-50Zr 48.52 0.05 <0.01 0.010 0.015 0.0010 0.081 Bal.
Ti-60Zr 58.40 0.02 <0.04 0.008 0.009 0.0037 0.088 Bal.
Table 3  Chemical compositions of Ti-Zr system alloys (mass fraction / %)
Fig.3  Microstructures of Ti-5Nb (a), Ti-10Nb (b), Ti-15Nb (c), Ti-20Nb (d) and Ti-25Nb (e) alloys bar
Condition Yield strength Ultimate strength Elongation Elastic modulus Yielding-to-tensile
MPa MPa % GPa ratio
1 layer (cold rolled) 445 805 1.5 59.6 0.5528
2 layers 445 990 3.5 65.0 0.4495
4 layers 800 1120 4.5 63.7 0.7143
8 layers 955 1200 5.0 67.4 0.7958
Table 4  Mechanical properties of ultra fine grain TLM alloy foil
Fig.4  Macrostructure (a) and microstructure (b) of cylinder porous TLM alloy specimen with porosity 64.5%, and relationship between porosity and elastic modulus (c)
Fig.5  Phase composition (a) and room temperature mechanical properties (b) of TLM alloy after solution treatment (ST) and ageing treatment
Biological evaluation National/international standard
Material chemical characterization GB/T16886.18-2011/ISO10993-18: 2005
Sample preparation and reference materials GB/T16886.12/ISO10993-12: 2007
Test for in-vitro cytotoxicity GB/T16886.5/ISO10993-5: 2009
Test for irritation and skin sensitization GB/T16886.10/ISO10993-10: 2010
Test for systemic toxicity GB/T16886.11-2011/ISO10993-11: 2006
Test for genotoxicity, carcinogenicity and reproductive toxicity GB/T16886.3-2008/ISO10993-3: 2003
Test for partial biological effects of implants GB/T16886.6/ISO10993-6: 2007
Selection of tests for interactions with blood GB/T16886.4-2003/ISO10993-4: 2002
Qualitative and quantitative analyses for degradation products of metal and alloy GB/T16886.15-2003/ISO10993-15: 2000
Toxicokinetic study design for degradation products and leachables GB/T16886.16/ISO10993-16: 2010
Principles and methods for immunotoxicology testing of medical devices GB/T16886.20/ISO/TS10993-20: 2006
Biological evaluation for dental medical devices YY/T0268/ISO7405, YY/T0127, YY/T0244
Table 5  Biological evaluation relative standards of biomedical titanium alloy devices[112]
Fig.6  Morphology of TLM alloy after surface dealloying
Fig.7  Porous TLM alloy implant materials with bone trabecula prepared by selective laser melting (SLM)
[1] Niinomi M.Recent metallic materials for biomedical applications[J]. Metall. Mater. Trans., 2002, 33A: 477
[2] Bothe R T, Beaton L E, Davenport H A.Reaction of bone to multiple metallic implants[J]. Surg. Gynecol. Obstet., 1940, 71: 598
[3] Leventhal G S.Titanium, a metal for surgery[J]. J. Bone Joint Surg. Am., 1951, 33A: 473
[4] Br?nemark P I, Breine U, Adell R, et al.Intra-osseous anchorage of dental prostheses: I. Experimental studies[J]. Scand. J. Plast. Reconstr. Surg., 1969, 3: 81
[5] Br?nemark P, Hansson B, Adell R, et al.Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scand. J. Plast. Reconstr. Surg. Suppl., 1977, 16: 1
[6] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[7] Long M, Rack H J.Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19: 1621
[8] Kuroda D, Niinomi M, Morinaga M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J]. Mater. Sci. Eng., 1998, A243: 244
[9] Niinomi M.Recent research and development in titanium alloys for biomedical applications and healthcare goods[J]. Sci. Technol. Adv. Mater., 2003, 4: 445
[10] Rack H J, Qazi J I.Titanium alloys for biomedical applications[J]. Mater. Sci. Eng., 2006, C26: 1269
[11] Semlitsch M, Staub F, Weber H.Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants[J]. Biomed. Eng., 1985, 30: 334
[12] Eisenbarth E, Velten D, Müller M, et al.Biocompatibility of β-stabilizing elements of titanium alloys[J]. Biomaterials, 2004, 25: 5705
[13] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[14] Yu Z T, Zhang Y F, Yuan S B, et al.Microstructure and wear resistance of a novel Ti4Zr1Sn3Mo25Nb (TLM) alloy[J]. Rare. Met. Mater. Eng., 2008, 37(suppl. 4): 542(于振涛, 张亚锋, 袁思波等. 近β型钛合金Ti4Zr1Sn3Mo25Nb (TLM)热处理与材料强化研究[J]. 稀有金属材料与工程, 2008, 37(增刊4): 542)
[15] Yu Z T, Zhang Y F, Liu H, et al.Effects of alloy elements, processing and heat treatment on mechanical properties of a near β type biomedical titanium alloy TiZrMoNb and microstructure analysis, Rare Met. Mater. Eng., 2010, 39: 1795(于振涛, 张亚峰, 刘辉等. 合金元素、加工与热处理对新型近β型钛合金TiZrMoNb力学性能的影响及微观分析[J]. 稀有金属材料与工程, 2010, 39: 1795)
[16] Yu Z T, Zhang M H, Tian Y X, et al.Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8: 219
[17] Song Y, Xu D S, Yang R, et al.Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys[J]. Mater. Sci. Eng., 1999, A260: 269
[18] Van Noort R.Titanium: The implant material of today[J]. J. Mater. Sci., 1987, 22: 3801
[19] Takahashi E, Sakurai T, Watanabe S, et al.Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys[J]. Mater. Trans., 2002, 43: 2978
[20] Niinomi M.Mechanical properties of biomedical titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 231
[21] Obbard E G, Hao Y L, Talling R J, et al.The effect of oxygen on α″ martensite and super elasticity in Ti-24Nb-4Zr-8Sn[J]. Acta Mater., 2011, 59: 112
[22] Banerjee R, Nag S, Fraser H L.A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants[J]. Mater. Sci. Eng., 2005, C25: 282
[23] Hu Q M, Li S J, Hao Y L, et al.Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations[J]. Appl. Phys. Lett., 2008, 93: 121902
[24] Zhao L C, Cui C X, Liu S J, et al.Design and research on properties of new type metastable β-titanium alloys for biomedical applications based on the d-electron alloy design method[J]. Rare Met. Mater. Eng., 2008, 37: 108(赵立臣, 崔春翔, 刘双进等. 基于d电子合金设计方法的生物医用新型亚稳β钛合金的设计及性能研究[J]. 稀有金属材料与工程, 2008, 37: 108)
[25] Yu Z T, Yu S, Zhang M H, et al.Design, development and application of novel biomedical Ti alloy materials applied in surgical implants[J]. Mater. China, 2010, 29(12): 35(于振涛, 余森, 张明华等. 外科植入物用新型医用钛合金材料设计, 开发与应用现状及进展[J]. 中国材料进展, 2010, 29(12): 35)
[26] Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science, 2003, 300: 464
[27] Fu Y Y, Yu Z T, Zhou L, et al.Influence of microstructure on tensile strength and fracture toughness of a Ti-13Nb-13Zr alloy[J]. Rare Met. Mater. Eng., 2005, 34: 881(付艳艳, 于振涛, 周廉等. 显微组织对Ti-13Nb-13Zr医用钛合金力学性能的影响[J]. 稀有金属材料与工程, 2005, 34: 881)
[28] Eylon D, Vassel A, Combres Y, et al.Issues in the development of beta titanium alloys[J]. JOM, 1994, 46(7): 14
[29] Liang S J, Hou F Q, Li Y H, et al.Microstructure and mechanical properties of Ti45Nb wires used in aviation rivets[J]. Rare Met. Mater. Eng., 2015, 44: 2203(梁书锦, 侯峰起, 李英浩等. 航空紧固件用Ti-45Nb合金丝材的组织和性能[J]. 稀有金属材料与工程, 2015, 44: 2203)
[30] Niinomi M, Hattori T, Morikawa K, et al.Development of low rigidity β-type titanium alloy for biomedical applications[J]. Mater. Trans., 2002, 43: 2970
[31] Liu H H, Niinomi M, Nakai M, et al.Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture[J]. J. Mech. Behav. Biomed. Mater., 2014, 30: 205
[32] Li Q, Niinomi M, Hieda J, et al.Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition[J]. Acta Biomater., 2013, 9: 8027
[33] Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
[34] Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications[J]. Acta Biomater., 2012, 8: 3888
[35] Zhao X F, Niinomi M, Nakai M, et al.Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 2392
[36] Zhao X L, Niinomi M, Nakai M.Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 2009
[37] Zhao X L, Niinomi M, Nakai M, et al.Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2011, 7: 3230
[38] Lütjering G, Williams J C.Titanium[M]. Berlin Heidelberg: Springer, 2007: 59
[39] Zhang Y M, Zhou L, Sun J, et al.Progress of vacuum arc remelting technology of titanium alloys[J]. Rare Met. Lett., 2008, 27(5): 9(张英明, 周廉, 孙军等. 钛合金真空自耗电弧熔炼技术发展[J]. 稀有金属快报, 2008, 27(5): 9)
[40] Lei W G, Zhao Y Q, Han D, et al.Development of melting technology for titanium and titanium alloys[J]. Mater. Rev., 2016, 30(5): 101(雷文光, 赵永庆, 韩栋等. 钛及钛合金熔炼技术发展现状[J]. 材料导报, 2016, 30(5): 101)
[41] Wang C, Mao X N, Yu L L, et al.Development of melting technology of titanium alloys[J]. Hot Work. Technol., 2009, 38(17): 42(王琛, 毛小南, 于兰兰等. 钛合金熔炼技术的进展[J]. 热加工工艺, 2009, 38(17): 42)
[42] Fox S, Patel A, Tripp D, et al.Recent developments in melting and casting technologies for titanium alloys [A]. Proceedings of the 13th World Conference on Titanium[C]. The Minerals, Metals & Materials Society, 2016
[43] Zhang L J, Zhou Z B, Chang H, et al.Segregation behavior and prevention measures of beta titanium alloy with high molybdenum content[J]. Chin. J. Nonferrous. Met., 2013, 23: 2206(张利军, 周中波, 常辉等. 高钼含量β型钛合金的偏析行为及预防措施[J]. 中国有色金属学报, 2013, 23: 2206)
[44] Sakamoto K, Kusamichi T, Nakagawa T, et al.Simulation on macro segregation in large forging ingots and VAR ingots[J]. J. Jpn Foundry Eng. Soc., 1998, 70: 21
[45] Leder M O, Gorina A V, Kornilova M A, et al.Definition method of thermal-physics properties of titanium alloys and boundary data parameters for vacuum arc remelting process[J]. Tsvetn. Met., 2016, (4): 70
[46] Ballantyne A S.The development and application of an integrated VAR process model[J]. BHM Berg, 2016, 161(suppl. 1): 12
[47] Zheng Y B, Chen Z Q, Chen F, et al.Control of copper segregation for large size TA13 Titanium alloy ingot[J]. Titanium Ind. Prog., 2011, 28(4): 32(郑亚波, 陈战乾, 陈峰等. 大规格TA13钛合金铸锭Cu偏析控制[J]. 钛工业进展, 2011, 28(4): 32)
[48] Zhao Y Q, Liu J L, Zhou L.Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Met. Mater. Eng., 2005, 34: 531(赵永庆, 刘军林, 周廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005, 34: 531)
[49] Mir H E, Jardy A, Bellot J P, et al.Thermal behaviour of the consumable electrode in the vacuum arc remelting process[J]. J. Mater. Process. Technol., 2010, 210: 564
[50] Sankar M, Prasad V V S, Baligidad R G, et al. Effect of vacuum arc remelting and processing parameters on structure and properties of high purity niobium[J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 120
[51] Kou H C, Zhang Y J, Li P F, et al.Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFé method[J]. Rare Met. Mater. Eng., 2014, 43: 1537
[52] Zhang Y J, Kou H C, Li P F, et al.Simulation on solidification structure and shrinkage porosity (hole) in TC4 ingot during vacuum arc remelting process[J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 418(张颖娟, 寇宏超, 李鹏飞等. 真空自耗电弧熔炼TC4铸锭的凝固组织和缩松缩孔的模拟[J]. 特种铸造及有色合金, 2012, 32: 418)
[53] Kennedy R L, Jones R M F, Davis R M, et al. Superalloys made by conventional vacuum melting and a novel spray forming process[J]. Vacuum, 1996, 47: 819
[54] Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of INCONEL718[J]. Metall. Mater. Trans., 2002, 33A: 443
[55] Xu X, Zhang W, Lee P D.Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling[J]. Metall. Mater. Trans., 2002, 33A: 1805
[56] Gartling D K, Sackinger P A.Finite element simulation of vacuum arc remelting[J]. Int. J. Numer. Methods Fluids, 1997, 24: 1271
[57] Tomono H, Hitomi Y, Ura S, et al.Mechanism of formation of the V-shaped segregation in the large section continuous cast bloom[J]. Trans. Iron Steel Inst. Japan, 1984, 24: 917
[58] Xu X, Ward R M, Jacobs M H, et al.Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation[J]. Metall. Mater. Trans., 2002, 33A: 1795
[59] Yang Z J.Coupling of multi-fields in VAR process of titanium alloy and its effects on the solidification behaviors [D]. Xi'an: Northwestern Polytechnical University, 2011(杨治军. 钛合金VAR过程多场耦合及其对凝固行为的影响 [D]. 西安: 西北工业大学, 2011)
[60] Fedotov S G, Chelidze T V, Kovneristyy Y K, et al.Phase transformations during heating of metastable alloys of the Ti-Ta system[J]. Phys. Met. Metallogr., 1986, 62: 109
[61] Zhou Y L, Niinomi M, Akahori T.Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications[J]. Mater. Sci. Eng., 2004, A371: 283
[62] Margevicius R W, Cotton J D.Stress-assisted transformation in Ti-60 wt pct Ta alloys[J]. Metall. Mater. Trans., 1998, 29A: 139
[63] Wang L, Lu W, Qin J, et al.Texture and superelastic behavior of cold-rolled TiNbTaZr alloy[J]. Mater. Sci. Eng., 2008, A491: 372
[64] Takahashi M, Kikuchi M, Takada Y, et al.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dent. Mater. J., 2002, 21: 270
[65] Hamzah E, Hastuti K, Hashim J.Effect of ageing temperature on the microstructures and mechanical properties of Ti-Nb shape memory alloys[J]. Adv. Mater. Res., 2014, 1024: 304
[66] Inamura T, Kim J I, Kim H Y, et al.Composition dependent crystallography of α″-martensite in Ti-Nb-based β-titanium alloy[J]. Philos. Mag., 2007, 87: 3325
[67] Valiev R, Materials science: Nanomaterial advantage[J]. Nature, 2002, 419: 887
[68] Valiev R Z, Langdon T G.Achieving exceptional grain refinement through severe plastic deformation: New approaches for improving the processing technology[J]. Metall. Mater. Trans., 2011, 42A: 2942
[69] Valiev R Z, Langdon T G.Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Prog. Mater Sci., 2006, 51: 881
[70] Zhu Y T, Liao X Z.Nanostructured metals: Rretaining ductility[J]. Nat. Mater., 2004, 3: 351
[71] Zhu Y T, Lowe T C, Valiev R Z, et al.Ultrafine-grained titanium for medical implants [P]. US Pat, 6399215 B1, 2002
[72] Yu Z, Ma X, Wang G, et al.Microstructure and mechanical properties of biomedical near-β Ti alloy TLM with nanostructure by ARB process [J], Ti 2011-Proceeding of the 12th World Conference on Titanium [C], Science Press, 2012: 2054
[73] Ma X Q, Yu Z T, Niu J L, et al.Microstructure and properties of ultrafine grained TLM alloy ARB sheet[J]. Rare Met. Mater. Eng., 2014, 43(suppl. 1): 152(麻西群, 于振涛, 牛金龙等. 超细晶TLM钛合金复合板材的组织与性能[J]. 稀有金属材料与工程, 2014, 43(增刊1): 152
[74] Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
[75] Buettner K M, Valentine A M.Bioinorganic chemistry of titanium[J]. Chem. Rev., 2012, 112: 1863
[76] Bertollo N, Da Assuncao R, Hancock N J, et al.Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model[J]. J. Arthroplasty, 2012, 27: 1429
[77] Butscher A, Bohner M, Hofmann S, et al.Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing[J]. Acta Biomater., 2011, 7: 907
[78] Bartolo P, Kruth J P, Silva J, et al.Biomedical production of implants by additive electro-chemical and physical processes[J]. CIRP Ann.-Manuf. Technol., 2012, 61: 635
[79] Wehm?ller M, Warnke P H, Zilian C, et al.Implant design and production—A new approach by selective laser melting[J]. Int. Congress Ser., 2005, 1281: 690
[80] Tian Y X, Yu Z T, Ong C Y A, et al. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents[J]. J. Mech. Behav. Biomed. Mater., 2015, 45: 132
[81] Yu S, Yu Z T, Wang G, et al.Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo- 25Nb biomedical alloy[J]. Colloids Surf., 2011, 85B: 103
[82] Bansiddhi A, Sargeant T D, Stupp S I, et al.Porous NiTi for bone implants: A review[J]. Acta Biomater., 2008, 4: 773
[83] Bose S, Vahabzadeh S, Bandyopadhyay A.Bone tissue engineering using 3D printing[J]. Mater. Today, 2013, 16: 496
[84] Li J P, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28: 2810
[85] Parthasarathy J, Starly B, Raman S, et al.Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. J. Mech. Behav. Biomed. Mater., 2010, 3: 249
[86] Pattanayak D K, Fukuda A, Matsushita T, et al.Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments[J]. Acta Biomater., 2011, 7: 1398
[87] Murr L E, Martinez E, Amato K N, et al.Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science[J]. J. Mater. Res. Technol., 2012, 1: 42
[88] St-Pierre J P, Gauthier M, Lefebvre L P, et al. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds[J]. Biomaterials, 2005, 26: 7319
[89] Jiang S W, Qi M.Development of porous metals used as biomaterials[J]. Mater. Sci. Eng., 2002, 20: 597(姜淑文, 齐民. 生物医用多孔金属材料的研究进展[J]. 材料科学与工程, 2002, 20: 597)
[90] Levine B R, Sporer S, Poggie R A, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27: 4671
[91] Geng L X, Gan H Q, Wang Q, et al.Effect of domestic porous tantalum on biocompatibility and osteogenic gene expression in rat osteoblasts[J]. J. Third. Mil. Med. Univ., 2014, 36: 1163(耿丽鑫, 甘洪全, 王茜等. 国产多孔钽对成骨细胞生物相容性及其相关成骨基因表达的影响[J]. 第三军医大学学报, 2014, 36: 1163)
[92] Wang C H, Yang C D, Liu M, et al.Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti-Mo alloys[J]. J. Mater. Sci., 2016, 51: 6886
[93] Hao Y L, Yang R, Li S J, et al.Ageing response of Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Acta Metall. Sin., 2002, 38(suppl.): 126(郝玉琳, 杨锐, 李述军等. 时效处理对Ti-29Nb-13Ta-4.6Zr医用钛合金Young's模量和力学性能的影响[J]. 金属学报, 2002, 38(增刊): 126)
[94] Miura K, Yamada N, Hanada S, et al.The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus[J]. Acta Biomater., 2011, 7: 2320
[95] Ohmori Y, Ogo T, Nakai K, et al.Effects of ω-phase precipitation on β→α, α′′ transformations in a metastable β titanium alloy[J]. Mater. Sci. Eng., 2001, A312: 182
[96] Mantani Y, Takemoto Y, Hida M, et al.Phase transformation of α″ martensite structure by aging in Ti-8 mass % Mo alloy[J]. Mater. Trans., 2004, 45: 1629
[97] Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[98] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[99] Nakai M, Niinomi M, Zhao X L, et al. Young's modulus changeable titanium alloys for orthopaedic applications [J]. Mater. Sci. Forum, 2012, 706-709: 557
[100] Nakai M, Niinomi M, Zhao X F, et al.Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation[J]. Mater. Lett., 2011, 65: 688
[101] Niinomi M, Liu Y, Nakai M, et al.Biomedical titanium alloys with Young's moduli close to that of cortical bone[J]. Regen. Biomater., 2016, 3:173
[102] Ma X Q, Han Y, Yu Z T, et al.Phase transformation and mechanical properties of TLM titanium alloy for orthopaedic implant application[J]. Rare Met. Mater. Eng., 2012, 41: 1535(麻西群, 憨勇, 于振涛等. 骨科植入用TLM钛合金的相转变与力学性能[J]. 稀有金属材料与工程, 2012, 41: 1535)
[103] Ma X Q, Yu Z T, Niu J L, et al.Microstructure and mechanical properties of Ti-3Zr-Mo-15Nb medical titanium alloys[J]. Rare Met. Mater. Eng., 2010, 39: 1956(麻西群, 于振涛, 牛金龙等. Ti-3Zr-Mo-15Nb医用钛合金的显微组织及力学性能[J]. 稀有金属材料与工程, 2010, 39: 1956)
[104] Beder O E, Stevenson J K, Jones T W.A further investigation of the surgical application of titanium metal in dogs[J]. Surgery, 1957, 41: 1012
[105] Pye A D, Lockhart D E A, Dawson M P, et al. A review of dental implants and infection[J]. J. Hosp. Infect., 2009, 72: 104
[106] Mow V C, Huiskes R, translated by Tang T T, Pei G X, Li X, et al. Basic Orthopaedic Biomechanics and Mechano-Biology [M]. 3rd Ed., Jinan: Shandong Science and Technology Press, 2009: 13(Mow V C, Huiskes R著, 汤亭亭, 裴国献, 李旭等译. 骨科生物力学暨力学生物学 [M]. 第3版. 济南: 山东科学技术出版社, 2009: 13)
[107] Yu Z T, Zhang M H, Yu S, et al.Analysis of R&D, production and application of biomedical Ti alloys materials applied in medical devices of China[J]. China Med. Device Inform., 2012, 18(7): 1(于振涛, 张明华, 余森等. 中国医疗器械用钛合金材料研发、生产与应用现状分析[J]. 中国医疗器械信息, 2012, 18(7): 1)
[108] Yu Z T, Yu S, Zhang M H, et al.Design, development and application of novel biomedical Ti alloy materials applied in surgical implants[J]. Mater. China, 2010, 29(12): 35(于振涛, 余森, 张明华等. 外科植入物用新型医用钛合金材料设计、开发与应用现状及进展[J]. 中国材料进展, 2010, 29(12): 35)
[109] Hao Y L, Yang R.Biomedical titanium alloy with ultralow elastic modulus and high strength[J]. Mater. Sci. Forum, 2010, 654: 2130
[110] Yu Z T, Ma X Q, Yu S, et al.Micro-nano technology and latest progress of biomedical titanium alloy[J]. Chin. J. Nonferrous Met., 2010, 20(suppl. 1): 1008(于振涛, 麻西群, 余森等. 生物医用钛合金的微纳化加工技术及最新进展[J]. 中国有色金属学报, 2010, 20(增刊1): 1008)
[111] Yu Z T, Han J Y, Ma X Q, et al.Biological and mechanical compatibility of biomedical titanium alloy materials[J]. Chin. J. Tissue Eng. Res., 2013, 17: 4707(于振涛, 韩建业, 麻西群等. 生物医用钛合金材料的生物及力学相容性[J]. 中国组织工程研究, 2013, 17: 4707)
[112] Xi T F.Evaluation of biology based on medical devices[J]. China Med. Device Inform., 1999, 5(3): 4(奚廷斐. 医疗器械生物学评价[J]. 中国医疗器械信息, 1999, 5(3): 4)
[113] Okazaki Y, Ito Y, Kyo K, et al.Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al[J]. Mater. Sci. Eng., 1996, A213: 138
[114] Okazaki Y, Gotoh E.Comparison of metal release from various metallic biomaterials in vitro[J]. Biomaterials, 2005, 26: 11
[115] Sumner D R, Galante J O.Determinants of stress shielding: Design versus materials versus interface[J]. Clin. Orthop. Relat. Res., 1992, 274: 202
[116] Li Y H, Yang C, Zhao H D, et al.New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014, 7: 1709
[117] Matsuno H, Yokoyama A, Watari F, et al.Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials, 2001, 22: 1253
[118] Cremasco A, Messias A D, Esposito A R, et al.Effects of alloying elements on the cytotoxic response of titanium alloys[J]. Mater. Sci. Eng., 2011, C31: 833
[119] Elias C N, Lima J H C, Valiev R, et al. Biomedical applications of titanium and its alloys[J]. JOM, 2008, 60: 46
[120] Kirmanidou Y, Sidira M, Drosou M E, et al.New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review[J]. BioMed Res. Int., 2016, 2016: 2908570
[121] Dohan Ehrenfest D M, Coelho P G, Kang B S, et al. Classification of osseointegrated implant surfaces: Materials, chemistry and topography[J]. Trends Biotechnol., 2010, 28: 198
[122] Richert L, Vetrone F, Yi J H, et al.Surface nanopatterning to control cell growth[J]. Adv. Mater., 2008, 20: 1488
[123] Zhang C B, Chen F L, Zhang R, et al.Experimental research on the osteoblasts function on Ti-75 alloy[J]. J. Pract. Stomatol., 2000, 16: 24(张春宝, 陈富林, 张蓉等. Ti-75合金对人成骨细胞的生长、增殖和功能分化的影响[J]. 实用口腔医学杂志, 2000, 16: 24)
[124] Hernandez-Rodriguez M A L, Contreras-Hernandez G R, Juarez-Hernandez A, et al. Failure analysis in a dental implant[J]. Eng. Fail. Anal., 2015, 57: 236
[125] Zhao F, Han Y F, Hu J F.Three-dimensional finite element method analysis of relation of implant elastic modulus and initial stress and bone-implant surface stress distribution[J]. Chin. J. Oral Implantol., 2006, 11(2): 55(赵峰, 韩彦峰, 胡江峰. 弹性模量和初始应力对种植体骨界面应力分布影响的三维有限元分析[J]. 中国口腔种植学杂志, 2006, 11(2): 55)
[126] Su Y C.Contemporary Oral Implantology [M]. Beijing: People's Medical Publishing House, 2004: 91(宿玉成. 现代口腔种植学 [M]. 北京: 人民卫生出版社, 2004: 91)
[127] Wang Q T, Zhang Y M, Hu N S, et al.Microstructure analysis of fractured Ti alloy implant[J]. Rare Met. Mater. Eng., 2004, 33: 442(王勤涛, 张玉梅, 胡奈赛等. 钛合金种植体临床断裂的原因分析[J]. 稀有金属材料与工程, 2004, 33: 442)
[128] Shemtov-Yona K, Rittel D.Identification of failure mechanisms in retrieved fractured dental implants[J]. Eng. Fail. Anal., 2014, 38: 58
[129] Kuramoto S, Furuta T, Hwang J H, et al.Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy[J]. Metall. Mater. Trans., 2006, 37A: 657
[130] Yu Z T, Zhou L, Luo L J, et al. Investigation on mechanical compatibility matching for biomedical titanium alloys [J]. Key Eng. Mater., 2005, 288-289: 595
[131] Abdel-Hady G M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation[J]. J. Mech. Behav. Biomed. Mater., 2013, 20: 407
[132] Shibata Y, Tanimoto Y, Maruyama N, et al.A review of improved fixation methods for dental implants. Part II: Biomechanical integrity at bone-implant interface[J]. J. Prosthodont. Res., 2015, 59: 84
[133] DeTolla D H, Andreana S, Patra A, et al. Role of the finite element model in dental implants[J]. J. Oral Implantol., 2000, 26: 77
[134] Yu Z, Lian Z.Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM[J]. Mater. Sci. Eng., 2006, A438: 391
[135] Bai X, Zhao Y, Zeng W, et al.Deformation mechanism and microstructure evolution of TLM titanium alloy during cold and hot compression[J]. Rare Met. Mater. Eng., 2015, 44: 1827)
[136] Suchanek K, Bartkowiak A, Gdowik A, et al.Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates[J]. Mater. Sci. Eng., 2015, C51: 57
[137] Liu J, Wang X D, Jin Q M, et al.The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings[J]. Biomaterials, 2012, 33: 5036
[138] Xue B J, Guo L T, Chen X Y, et al.Electrophoretic deposition and laser cladding of bioglass coating on Ti[J]. J. Alloys Compd., 2017, 710: 663
[139] Wen F, Huang N, Sun H, et al.The study of composition, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition[J]. Nucl. Instrum. Methods Phys. Res. Sect., 2004, 222B: 81
[140] Hwang I J, Choe H C, Brantley W A.Electrochemical characteristics of Ti-6Al-4V after plasma electrolytic oxidation in solutions containing Ca, P, and Zn ions[J]. Surf. Coat. Technol., 2017, 320: 458
[141] Zhou M, Xiong P, Jia Z J, et al.Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J]. Mater. Lett., 2017, 202: 9
[142] Schmehl J M, Harder C, Wendel H P, et al.Silicon carbide coating of nitinol stents to increase antithrombogenic properties and reduce nickel release[J]. Cardiovasc. Revasc. Med., 2008, 9: 255
[143] Huang C L, Zhao C L, Han P, et al.Histological and biomechanical evaluation in the interface between nano-surface titanium alloy implants and bone[J]. Chin. J. Tissue Eng. Res., 2011, 15: 3867(黄成龙, 赵常利, 韩培等. 纳米化表面钛合金内植物的界面组织学和生物力学评价[J]. 中国组织工程研究与临床康复, 2011, 15: 3867)
[144] Gu X F, Jiang Y, Han P, et al.Effect of the nano-surface of titanium alloy on the adhesion of osteoblasts[J]. Chin. J. Clin. Rehab., 2006, 10(25): 46(顾新丰, 蒋垚, 韩培等. 钛合金表面纳米化对成骨细胞黏附的影响[J]. 中国临床康复, 2006, 10(25): 46)
[145] Hélary G, Noirclère F, Mayingi J, et al.A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating[J]. Acta Biomater., 2009, 5: 124
[146] Hoshikawa Y, Onoki T, Akao M, et al.Blood compatibility and tissue responsiveness on simple and durable methylsiloxane coating[J]. Mater. Sci. Eng., 2012, C32: 1627
[147] Pegg E C, Walker G S, Scotchford C A, et al.Mono-functional aminosilanes as primers for peptide functionalization[J]. J. Biomed. Mater. Res., 2009, 90A: 947
[148] Zhang F, Zhang Z B, Zhu X L, et al.Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion[J]. Biomaterials, 2008, 29: 4751
[149] Neoh K G, Hu X F, Zheng D, et al.Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012, 33: 2813
[150] Rychly J, Nebe B J.Cell-material interaction[J]. BioNanoMaterials, 2013, 14: 153
[151] Huang R, Lu S M, Han Y.Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Colloids Surf., 2013, 111B: 232
[152] Hanawa T.Biofunctionalization of titanium for dental implant[J]. Jpn. Dent. Sci. Rev., 2010, 46: 93
[153] Foss B L, Ghimire N, Tang R G, et al.Bacteria and osteoblast adhesion to chitosan immobilized titanium surface: A race for the surface[J]. Colloids Surf., 2015, 134B: 370
[154] Pessková V, Kubies D, Hulejová H, et al.The influence of implant surface properties on cell adhesion and proliferation[J]. J. Mater. Sci. Mater. Med., 2007, 18: 465
[155] Mager M D, LaPointe V, Stevens M M. Exploring and exploiting chemistry at the cell surface[J]. Nat. Chem., 2011, 3: 582
[156] Benoit D S W, Schwartz M P, Durney A R, et al. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells[J]. Nat. Mater., 2008, 7: 816
[157] Slater J, Boyce P, Jancaitis M, et al.Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces[J]. ACS Appl. Mater. Interfaces, 2015, 7: 4390
[158] Paital S R, Dahotre N B.Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies[J]. Mater. Sci. Eng., 2009, R66: 1
[159] Sen Y U, Zhen-Tao Y U, Han J Y, et al. Haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy with surface heparinization using electrostatic self assembly technology[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 3046
[160] Koudelka P, Doktor T, Kytyr D, et al.Micromechanical properties of biocompatible materials for bone tissue engineering produced by direct 3D printing[J]. Key Eng. Mater., 2015, 662: 138
[161] Jakus A E, Rutz A L, Shah R N.Advancing the field of 3D biomaterial printing[J]. Biomed. Mater., 2016, 11: 014102
[162] Hughes G, ?chsner A.Design, manufacture and testing of three-dimensional scaffolds[J]. Adv. Struct. Mater., 2015, 71: 133
[163] Roach P, Eglin D, Rohde K, et al.Modern biomaterials: A review-bulk properties and implications of surface modifications[J]. J. Mater. Sci. Mater. Med., 2007, 18: 1263
[164] Yu J, Lin X, Ma L, et al.Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)[J]. Mater. Sci. Eng., 2011, A528:1094
[165] Fukuda A, Takemoto M, Saito T, et al.Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomater., 2011, 7: 2327
[166] Heinl P, Müller L, K?rner C, et al.Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomater., 2008, 4: 1536
[167] Traini T, Mangano C, Sammons R L, et al.Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants[J]. Dent. Mater., 2008, 24: 1525
[168] Murr L E, Quinones S A, Gaytan S M, et al.Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2009, 2: 20
[169] Parthasarathy J.A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications[J]. J. Manuf. Process., 2011, 13:160
[170] Xiang L, Wang C, Zhang W, et al.Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process[J]. Mater. Lett., 2009, 63: 403
[171] Horn T J, Harrysson O L A, Marcellin-Little D J, et al. Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting [J]. Addit. Manuf., 2014, 1-4: 2
[172] Rafi H K, Karthik N V, Gong H, et al.Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. J. Mater. Eng. Perform., 2013, 22: 3872
[173] Li F, Wang Z, Zeng X.Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting[J]. Mater. Lett., 2017, 199: 79
[174] Leuders S, Th?ne M, Riemer A, et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. Int. J. Fatigue, 2013, 48: 300
[175] Yang J, Wang J, Yuan T, et al.The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells[J]. J. Mater. Sci. Mater. Med., 2013, 24: 2235
[176] Anselme K, Bigerelle M, Noel B, et al.Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses[J]. J. Biomed. Mater. Res., 2000, 49A: 155
[177] Tan X P, Tan Y J, Csl C, et al.Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility[J]. Mater. Sci. Eng., 2017, C76: 1328
[178] Ru Z F, Li Y, Luo K, et al.Progress in low elastic modulus titanium alloy[J]. Mater. Rev., 2011, 25(spec. issue): 250(茹志芳, 李岩, 罗坤等. 低弹性模量钛合金的研究进展[J]. 材料导报, 2011, 25(特刊): 250)>
[179] Bremus-Koebberling E A, Beckemper S, Koch B, et al. Nano structures via laser interference patterning for guided cell growth of neuronal cells[J]. J. Laser. Appl., 2012, 24: 042013
[180] Munuera C, Matzelle T R, Kruse N, et al.Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study[J]. Acta Biomater., 2007, 3: 113
[181] Mendon?a G, Mendon?a D B S, Sim?es L G P, et al. The effects of implant surface nanoscale features on osteoblast-specific gene expression[J]. Biomaterials, 2009, 30: 4053
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[5] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[9] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[10] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[11] Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. 金属学报, 2016, 52(10): 1267-1278.
[12] Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS[J]. 金属学报, 2015, 51(10): 1191-1206.
[13] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[14] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[15] . PHASE FIELD SIMULATION OF SINTERING PROCESS IN BIPHASIC POROUS MATERIAL[J]. 金属学报, 2012, 48(10): 1207-1214.
No Suggested Reading articles found!