Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1303-1310    DOI: 10.11900/0412.1961.2017.00260
Orginal Article Current Issue | Archive | Adv Search |
Fabrication of the Porous Tantalum and Its Current Status Used as Orthopedics Implants Materials
Dewei ZHAO(), Junlei LI
Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
Cite this article: 

Dewei ZHAO, Junlei LI. Fabrication of the Porous Tantalum and Its Current Status Used as Orthopedics Implants Materials. Acta Metall Sin, 2017, 53(10): 1303-1310.

Download:  HTML  PDF(3771KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous tantalum (PT) is an orthopedics implant material that has been developed rapidly in recent decades. PT exhibits excellent biocompatibility, outstanding comprehensive mechanical properties, initial stability originated from their high friction factor and long term stability from their good osteoinduction, which make it widely applied in clinical practice. In this review, state of the arts and recent deve-lopment in the field of porous tantalum used as orthopedics implant material have been summarized and commented, which consist of introduction of its background, advantages, preparation approaches, biological performance and application status on clinic. The prospects are also described.

Key words:  porous tantalum      orthopedics implant material      trabecular metal     
Received:  30 June 2017     
ZTFLH:  R318.08  
Fund: Supported by National Science and Technology Pillar Program of China (No.2012BAI17B02), National Key Research and Development Program of China (No.2016YFC1102000), China Postdoctoral Science Foundation (No.171479) and Affiliated Zhongshan Hospital of Dalian University (No.DLDXZSYY-DK201701)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00260     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1303

Fig.1  Microstrutures of the trabecular metal (TM)[8] (a) and cancellous bone (b)[9]
Bone tissue Fabrication Porosity Pore size Elastic Compression Compression Fatigue Ref.
method % μm modulus yield strength strength strength
GPa MPa MPa MPa
Cortical bone - 3~5 - 7~30 - 100~230 27~35 [1]
Cancellous - 50~90 - 0.01~3.0 - 2~12 - [1]
bone CVD (based on porous 75~85 400~600 1.5±0.4 35.3±6.5 49.7±6.6 35 [9]
carbon scaffold)
CVD (based on porous - - - - - - [17]
SiC scaffold)
Foam impregnation 59.4 300~500 1.73~2.72 35~51 50~73 - [15]
method
Addictive 79.7±0.2 500 1.22±0.07 12.7±0.6 28.3±1.2 7.35 [20]
manufacturing
Powder metallurgy - 100~400 2.0±0.3 - 50.3±0.5 - [21]
Table 1  Comparisons of the pore structure and mechanical properties between bone tissue and porous tantalum fabricated by various processing methods[1,9,15,17,20,21]
Fig.2  Porous tantalum fabricated by various technological methods
(a) chemical vapor deposition (CVD) on porous carbon scaffold[16]
(b) CVD on porous SiC scaffold[17]
(c) foam impregnation process on polyurethane[9]
(d) additive manufacturing[20]
(e) powder metallurgy[21]
Fig.3  Schematic of the preparation of TM by CVD
Fig.4  Flow chart for peparation of porous tantalum by foam impregnation process (PVA—polyvinyl alcohol, PU—polyurethane)
Fig.5  Flow chart for peparation of porous tantalum by powder metallurgy method
Fig.6  Porous Ta orthopedics devices for clinical use[7,31]
(a) porous tantalum hip prosthesis
(b) porous tantalum knee prosthesis
(c) porous tantalum rod implants
(d) porous tantalum spinal fusion cages
(e) porous tantalum bi-directional compression screw
(f) porous tantalum acetabulum revision prosthesis
[1] Wang X J, Xu S Q, Zhou S W, et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127
[2] Chen Q Z, Thouas G A.Metallic implant biomaterials[J]. Mater. Sci. Eng., 2015, R87: 1
[3] Lu R J, Liu H C.The progress of porous tantalum used as orthopaedic implants materials[J]. Chin. J. Geriat. Dent., 2013, 11: 173(路荣建, 刘洪臣. 多孔钽作为骨植入材料的研究进展[J]. 中华老年口腔医学杂志, 2013, 11: 173)
[4] Guo M, Zheng Y F.Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery[J]. Chin. Orthop. J. Clin. Basic Res., 2013, 5: 47(郭敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状[J]. 中国骨科临床与基础研究杂志, 2013, 5: 47)
[5] Fernandez-Fairen M, Querales V, Jakowlew A, et al.Tantalum is a good bone graft substitute in tibial tubercle advancement[J]. Clin. Orthop. Relat. Res., 2010, 468: 1284
[6] Kim D G, Huja S S, Tee B C, et al.Bone ingrowth and initial stability of titanium and porous tantalum dental implants: A pilot canine study[J]. Implant Dent., 2013, 22: 399
[7] Wegrzyn J, Kaufman K R, Hanssen A D, et al.Performance of porous tantalum vs. titanium cup in total hip arthroplasty: Randomized trial with minimum 10-year follow-up[J]. J. Arthroplasty, 2015, 30: 1008
[8] Ruan D, Lu G, Chen F L, et al.Compressive behaviour of aluminium foams at low and medium strain rates[J]. Compos. Struct., 2002, 57: 331
[9] Zardiackas L D, Parsell D E, Dillon L D, et al.Structure, metallurgy, and mechanical properties of a porous tantalum foam[J]. J. Biomed. Mater. Res., 2001, 58A: 180
[10] Stiehler M, Lind M, Mygind T, et al.Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces[J]. J. Biomed. Mater. Res., 2008, 86A: 448
[11] Balla V K, Banerjee S, Bose S, et al.Direct laser processing of a tantalum coating on titanium for bone replacement structures[J]. Acta Biomater., 2010, 6: 2329
[12] Bobyn J D, Stackpool G J, Hacking S A, et al.Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial[J]. J. Bone Joint Surg. Br., 1999, 81: 907
[13] Hacking S A, Bobyn J D, Toh K, et al.Fibrous tissue ingrowth and attachment to porous tantalum[J]. J. Biomed. Mater. Res., 2000, 52A: 631
[14] Li J P, Li S H, Van Blitterswijk C A, et al. A novel porous Ti6Al4V: Characterization and cell attachment[J]. J. Biomed. Mater. Res., 2005, 73A: 223
[15] Jie Y F.Research on preparation, technology and properties of porous Tantalum [D]. Changsha: Central South University, 2011(节云峰. 多孔钽的制备及其工艺和性能的研究 [D]. 长沙: 中南大学, 2011)
[16] Kaplan R B.Open cell tantalum structures for cancellous bone, implants and cell and tissue receptors [P]. US Pat, 5282861, 1994
[17] Ma Z J, Xie H, Wang B J, et al.A novel tantalum coating on porous SiC used for bone filling material[J]. Mater. Lett., 2016, 179: 166
[18] Wei X W, Zhao D W, Wang B J, et al.Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo[J]. Exp. Biol. Med., 2016, 241: 592
[19] Wang J, Li J, Yang H L, et al.Fabrication of trabecular metal via impregnation and its properties[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 1684(王军, 李婧, 杨海林等. 泡沫浸渍法制备小梁金属及性能[J]. 中南大学学报(自然科学版), 2012, 43: 1684)
[20] Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants[J]. Acta Biomater., 2015, 14: 217
[21] Zhou Y S, Zhu Y C.Three-dimensional Ta foams produced by replication of NaCl space-holders[J]. Mater. Lett., 2013, 99: 8
[22] Balla V K, Bodhak S, Bose S, et al.Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties[J]. Acta Biomater., 2010, 6: 3349
[23] Jia J G, Siddiq A R, Kennedy A R.Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2015, 48: 229
[24] Esen Z, Bor ?.Processing of titanium foams using magnesium spacer particles[J]. Scr. Mater., 2007, 56: 341
[25] Jha N, Mondal D P, Dutta Majumdar J, et al.Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route[J]. Mater. Des., 2013, 47: 810
[26] Dabrowski B, Swieszkowski W, Godlinski D, et al.Highly porous titanium scaffolds for orthopaedic applications[J]. J. Biomed. Mater. Res.: Appl. Biomater., 2010, 95B: 53
[27] Sagomonyants K B, Hakim-Zargar M, Jhaveri A, et al.Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients[J]. J. Orthop. Res., 2011, 29: 609
[28] Tang Z, Xie Y T, Yang F, et al.Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo[J]. PLoS One, 2013, 8: e66263
[29] Wang Q, Qiao Y Q, Cheng M Q, et al.Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth[J]. Sci. Rep., 2016, 6: 26248
[30] Lu T, Wen J, Qian S, et al.Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus[J]. Biomaterials, 2015, 51: 173
[31] Levine B R, Sporer S, Poggie R A, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27: 4671
[32] Ries M D, Cabalo A, Bozic K J, et al.Porous tantalum patellar augmentation: The importance of residual bone stock[J]. Clin. Orthop. Relat. Res., 2006, 452: 166
[33] Zhang Y, Li L, Shi Z J, et al.Porous tantalum rod implant is an effective and safe choice for early-stage femoral head necrosis: A meta-analysis of clinical trials[J]. Eur. J. Orthop. Surg. Traumatol., 2013, 23: 211
[34] Fernández-Fairen M, Murcia A, Torres A, et al.Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy?[J]. Spine, 2012, 37: 1734
[35] Kanczler J M, Oreffo R O C. Osteogenesis and angiogenesis: The potential for engineering bone[J]. Eur. Cell Mater., 2008, 15: 100
[36] Eriksen S, Gillesberg B, Langmaack L N, et al.Tantalum coated carbon-carbon composite material for surgical implants [A]. Medical Device Materialsv II: Proceedings from the Materials & Processes for Medical Device Conference 2004[C]. Minnesota, 2005: 241
[37] Zhao D W, Wang B J, Xie H, et al.Fracture is fixed with porous tantalum metal screw [P]. Chin Pat, ZL201620406230.2. 2016(赵德伟, 王本杰, 谢辉等. 一种骨折固定用多孔钽金属螺钉 [P]. 中国专利, 201620406230.2, 2016)
[38] Zhao D W, Qiu X, Wang B J, et al.Epiphyseal arterial network and inferior retinacular artery seem critical to femoral head perfusion in adults with femoral neck fractures[J]. Clin. Orthop. Relat. Res., 2017, 475: 2011
[1] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[2] Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. 金属学报, 2018, 54(7): 1010-1018.
[3] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[4] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[5] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[6] Yibin REN, Jun LI, Qingchuan WANG, Ke YANG. A Review: Research on MR-Compatible Alloys in MRI[J]. 金属学报, 2017, 53(10): 1323-1330.
[7] Ying ZHAO, Lilan ZENG, Tao LIANG. Development in Biocompatibility of Biodegradable Magnesium-Based Metals[J]. 金属学报, 2017, 53(10): 1181-1196.
[8] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[9] Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface[J]. 金属学报, 2017, 53(10): 1337-1346.
[10] Jiahui DONG, Lili TAN, Ke YANG. Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes[J]. 金属学报, 2017, 53(10): 1197-1206.
[11] Tingfei XI, Lina WEI, Jing LIU, Xiaoli LIU, Zhen ZHEN, Yufeng ZHENG. Research Progress in Bioresorbable Magnesium Scaffolds[J]. 金属学报, 2017, 53(10): 1153-1167.
[12] Yibin REN, Haochuan ZHAO, Ke YANG. Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning[J]. 金属学报, 2017, 53(10): 1331-1336.
[13] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[14] . Bone Induction of a Biodegradable Magnesium Alloy[J]. 金属学报, 2008, 44(9): 1035-1041 .
[15] GUI Lin. Synthesis of Cobalt Ferrite Nanoarticles in High Static Magnetic Field by Coprecipitation-Phase Transform way[J]. 金属学报, 2007, 43(5): 529-533 .
No Suggested Reading articles found!