Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1337-1346    DOI: 10.11900/0412.1961.2017.00243
Orginal Article Current Issue | Archive | Adv Search |
The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface
Muqin LI(), Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG
Key Laboratory of Biomaterials of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
Cite this article: 

Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface. Acta Metall Sin, 2017, 53(10): 1337-1346.

Download:  HTML  PDF(4417KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Entering into 21 Century,the degradable Mg and Mg alloy become research focus for the development of Internal fixation material from inert to active metal. The polybasic coating (UMAO-OH-SCA-SF) was prepared by ultrasound micro-arc oxidation (UMAO), alkali treatment (OH), treatment of silicohydride conversion coating (SCA) and the treatment of self-assembly silk fibroin on the surface of magnesium, which can improve the corrosion resistance and bioactivity of pure magnesium. The surface topography, structure, corrosion resistance, cell activity and bone growth in vivo of the coating were studied by SEM, IR spectra, electrochemical measurement, vitro experiment and implant test. The results show that the main phase of coating is MgO. The alkali treatment is beneficial to forming Si-O-Mg film by silicohydride coupling. With the self-assembly silk fibroin time increasing, the silk fibroin structure changes from random coil to β-fold. The polybasic coating self-corrosion is improved and self-corrosion current is reduced by two orders of magnitude. Compared to substrate, the polybasic coating has better proliferation, adherent and differentiation of osteoblast. It has a better bone integration capacity in the bone healing early stage, and which can control magnesium ion dissolving. The UMAO-OH-SCA-SF/1.5h coating has the best property.

Key words:  pure magnesium      ultrasound micro-arc oxidation      silicohydride      silk fibroin      corrosion resistance      bioactivity     
Received:  19 June 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (No.31370979)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00243     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1337

Fig.1  Pure Mg screw implantation (a) and sampling on the mandible (b)
Fig.2  Surface and section SEM images of different coatings
(a) UMAO (b) UMAO-OH-SCA-SF/0.5h
(c) UMAO-OH-SCA-SF/1.0h (d) UMAO-OH-SCA-SF/1.5h
Fig.3  Element contents of the different coatings
(a) UMAO (b) UMAO-OH-SCA-SF/0.5h
(c) UMAO-OH-SCA-SF/1.0h (d) UMAO-OH-SCA-SF/1.5h
Fig.4  Infrared spectra of coatings with different treatment time
Fig.5  Contact angles of coatings with different treatment times
(a) UMAO (b) UMAO-OH-SCA-SF/0.5h
(c) UMAO-OH-SCA-SF/1.0h
(d) UMAO-OH-SCA-SF/1.5h
Fig.6  Tafel polarization curves of coatings with different treatment times
Coating Ecorr / V icorr
10-5Acm-2
UMAO -1.554±0.10 211.3±8.2
UMAO-OH-SCA-SF/0.5h -1.482±0.11 6.577±1.2
UMAO-OH-SCA-SF/1.0h -1.461±0.15 3.595±0.91
UMAO-OH-SCA-SF/1.5h -1.447±0.10 2.135±0.51
Table 1  Corrosion potential (Ecorr) and corrosion current density (icorr) of coatings with different treatment times in NaCl solution
Fig.7  Osteoblast proliferation by CCK8 testing (a) and activity ALP testing (b) of different coatings
Fig.8  Hematoxylin eosin (HE) staining of different coatings around the implantation of UMAO (a1~a3), UMAO-OH-SCA-SF/0.5h (b1~b3) and UMAO-OH-SCA-SF/1.5h (c1~c3) for 2 weeks (a1~c1), 4 weeks (a2~c2) and 6 weeks (a3~c3)
Fig.9  BMP-2 average gray level testing on the coatings of different implantation-bone osseointegration interface
Fig.10  variation concentrations of Mg2+ in the animal serum with implant of different coatings
[1] Vormann J.Magnesium: Nutrition and metabolism[J]. Mol. Aspects Med., 2003, 24: 27
[2] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[3] Narayan R J.The next generation of biomaterial development[J]. Philos. Trans. Roy. Soc., 2010, 368A: 1831
[4] Hench L L, Polak J M.Third-generation biomedical materials[J]. Science, 2002, 295: 1014
[5] Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[6] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[7] Han X G, Zhu X P, Lei M K.Electrochemical properties of microarc oxidation films on a magnesium alloy modified by high-intensity pulsed ion beam[J]. Surf. Coat. Technol., 2011, 206: 874
[8] Pan Y K, Chen C Z, Wang D G, et al.Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings[J]. Ceram. Int., 2012, 38: 5527
[9] Qu L J, Li M Q, Zhang E L, et al.Corrosion resistance of magnesium alloy coated by ultrasonic-micro arc oxidation in simulated body fluid[J]. Trans. Mater. Heat Treat., 2013, 34(3): 130(曲立杰, 李慕勤, 张二林等. 超声微弧氧化处理镁合金模拟体液中的耐蚀性[J]. 材料热处理学报, 2013, 34(3): 130)
[10] Xu Y D, Chen Y B, Shi M, et al.Surface treatment application of silane on metals[J]. Met. Funct. Mater., 2011, 18(5): 66(许育东, 陈云帮, 石敏等. 金属表面硅烷化处理应用的研究[J]. 金属功能材料, 2011, 18(5): 66)
[11] Palanivel V, Zhu D Q, van Ooij W J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys[J]. Prog. Org. Coat., 2003, 47: 384
[12] Hu J M, Liu L, Zhang J T, et al.Studies of surface treatment of aluminum alloys by BTSE silane agent[J]. Acta Metall. Sin., 2004, 40: 1189(胡吉明, 刘倞, 张金涛等. 铝合金表面BTSE硅烷化处理研究[J]. 金属学报, 2004, 40: 1189)
[13] Zucchi F, Grassi V, Frignani A, et al.Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy[J]. Surf. Coat. Technol., 2006, 200: 4136
[14] Zhang W, Sun Z F, Ding T, et al.Effect of silane treatment on corrosion resistance of AZ31 magnesium alloys[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2009, 23(9): 128(张微, 孙智富, 丁婷等. 硅烷处理对AZ31镁合金耐蚀性的影响[J]. 重庆工学院学报(自然科学版), 2009, 23(9): 128)
[15] Zhou C Z, Confalonieri F, Medina N, et al.Fine organization of Bombyx mori fibroin heavy chain gene[J]. Nucleic Acids Res., 2000, 28: 2413
[16] Tanaka K, Kajiyama N, Ishikura K, et al.Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori[J]. Biochim. Biophys. Acta, 1999, 1432: 92
[17] Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar M A, et al.Enhanced mechanical properties of thermo sensitive chitosan hydrogel by silk fibers for cartilage tissue engineering[J]. Mater. Sci. Eng., 2013, C33: 4786
[18] Zhu H L, Wu B W, Feng X X, et al.Preparation and characterization of bioactive mesoporous calcium silicate-silk fibroin composite films[J]. J. Biomed. Mater. Res., 2011, 98B: 330
[19] Wang X Y, Kim H J, Xu P, et al.Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21: 11335
[20] Li M Q, Liu J, Ma C.Preparation method of magnesium surface ultrasonic micro-arc oxidation-HF-silane coupling agent multistage compound bioactive coating [P]. Chin Pat, 201310537474.5, 2014(李慕勤, 刘江, 马臣. 镁表面超声微弧氧化-HF-硅烷偶联剂多级复合生物活性涂层制备方法 [P]. 中国专利, 201310537474.5, 2014)
[21] Li M Q, Ma C, Zhang A Q.Preparation method of ultrasonic microarc oxidation silver-carrying antibiotic bioactive coating on magnesium and titanium surface [P]. Chin Pat, 200910072105.7, 2010(李慕勤, 马臣, 张爱琴. 镁、钛表面超声微弧氧化载银抗菌生物活性涂层制备方法 [P]. 中国专利, 2009100721057.7, 2010)
[22] Gao J C, Li L C, Wang Y, et al.Corrosion resistance of alkali heat treated magnesium in bionics simulated body fluid[J]. Trans. Mater. Heat Treat., 2005, 30(4): 38(高家诚, 李龙川, 王勇等. 碱热处理镁及其在仿生模拟体液中耐蚀性能[J]. 金属热处理, 2005, 30(4): 38)
[23] Correa P S, Malfatti C F, Azambuja D S.Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxy silane doped with cerium ions[J]. Prog. Org. Coat., 2011, 72: 739
[24] Wu H J, Lu J T.Characterization and formation of silane film on hot-dipped galvanized steel sheet[J]. Mater. Prot., 2009, 42(5): 7(吴海江, 卢锦堂. 热镀锌钢表面硅烷膜的制备、表征及成膜机理[J]. 材料保护, 2009, 42(5): 7)
[25] Fang X X, Cao Y B, Liang W, et al.Conventional treatment technology and silanization technology for the surface of magnesium alloy[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2010, 12(2): 123(方欣欣, 曹岳斌, 梁伟等. 镁合金表面常规处理与硅烷化处理技术[J]. 重庆科技学院学报(自然科学版), 2010, 12(2): 123)
[26] Shi P J, Goh J C H. Self-assembled silk fibroin particles: Tunable size and appearance [J]. Powder Technol., 2012, 215-216: 85
[27] Cheng C, Shao Z Z, Vollrath F.Silk fibroin-regulated crystallization of calcium carbonate[J]. Adv. Funct. Mater., 2008, 18: 2172
[28] Hu D D, Yang M Y, Zhu L J.Influence of silk fibroin-based biomaterials on cell behaviors[J]. Bull. Seric., 2016, 47(1): 6(胡豆豆, 杨明英, 朱良均. 丝素蛋白生物材料对细胞行为的影响[J]. 蚕桑通报, 2016, 47(1): 6)
[29] Marolt D, Augst A, Freed L E, et al.Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors[J]. Biomaterials, 2006, 27: 6138
[30] Yang Y M, Ding F, Wu J, et al.Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration[J]. Biomaterials, 2007, 28: 5526
[31] Hein J, Hartmann K.Reference ranges for laboratory parameters in rabbits[J]. Tier?rztl. Praxis Kleint., 2003, (5): 321
[32] Yang L, Chen Y, Zhu L J, et al.In vivo degradation test of a novel silk fibroin scaffold[J]. Bull. Seric., 2011, 37: 713(杨磊, 陈宇, 朱良均等. 一种新型丝素支架材料的体内降解试验[J]. 蚕桑通报, 2011, 37: 713)
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[4] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[5] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[6] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[7] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[8] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[9] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[10] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[12] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[13] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[14] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[15] Chao XIA, Shi QIAN, Donghui WANG, Xuanyong LIU. Properties of Carbon Ion Implanted Biomedical Titanium[J]. 金属学报, 2017, 53(10): 1393-1401.
No Suggested Reading articles found!