Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1331-1336    DOI: 10.11900/0412.1961.2017.00233
Orginal Article Current Issue | Archive | Adv Search |
Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning
Yibin REN1, Haochuan ZHAO1,2, Ke YANG1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 AECC Guizhou Liyang Aviation Power Co., LTD, Guiyang 550014, China
Cite this article: 

Yibin REN, Haochuan ZHAO, Ke YANG. Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning. Acta Metall Sin, 2017, 53(10): 1331-1336.

Download:  HTML  PDF(1738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High nitrogen nickel free stainless steel (HNNFSS) has begun to be used in clinic, which possesses excellent mechanical properties, corrosion resistance and biocompatibility. Especially its strength is two times more than that of the conventional 316L stainless steel, but this advantage is not fully used in optimization of both the structure and the size of the implant devices. In this work, the effect of thickness change of HNNFSS bone plate on the biomechanical behavior of bone plate was studied by means of finite element analysis. The result showed that the resistances to bending, tension and compression of HNNFSS plate are all better than those of 316L plate when its thickness is thinned less than 18%. The internal fixation of the lightweight HNNFSS plate was also studied by a 12 weeks rabbit femur fracture model and the result showed that the HNNFSS plate with about 14% thickness thinning could promote the healing and reconstruction of bone fracture of rabbit femur in comparison with 316L plate.

Key words:  high nitrogen nickel free stainless steel      lightweight      biomechanics      finite element     
Received:  16 June 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (No.31370976)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00233     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1331

Biomedical metal Condition Yield strength
MPa
Tensile strength
MPa
Elongation
%
316L stainless steel[20] Annealed ≥190 ≥490~690 ≥40
Cold deformation ≥600 ≥860~1100 ≥12
Ti-6Al-4V[21] Annealed ≥830 ≥895 ≥10
HNNFSS (ASTM)[22] Annealed ≥517 ≥827 ≥30
Cold deformation ≥1241 ≥1379 ≥12
HNNFSS (IMR, CAS)[8,19]
Annealed 616 1032 59
10% cold deformation 990 1180 42
30% cold deformation 1410 1470 20
Table 1  Mechanical properties of HNNFSS and clinically used medical metal materials[8,19-22]
Fig.1  Dimension of the stainless steel plate in the study (unit: mm)
Material Condition E
GPa
Poisson ratio Density
kgm-3
Friction coefficient True strain True stress
MPa
HNNFSS 20% cold rolled 189 0.27 7715 0.2 0.0064 0.1451 0.3026 1207.7 1432.9 1675.5
316L 20% cold rolled 200 0.30 7800 0.2 0.0040 0.1506 0.1645 800.0 908.0 912.1
Table 2  Material parameters of the stainless steel plate in the study
Fig.2  Simulated load-displacement curves of 316L stainless steel plate and HNNFSS plates with different thicknesses in the three point bending test
Fig.3  Stress nephograms of 316L stainless steel plate (a) and HNNFSS plates with thicknesses of 1.1 mm (b), 1.0 mm (c), 0.9 mm (d) and 0.8 mm (e) in the three point bending test
Fig.4  Simulated load-displacement curves of 316L stainless steel plate and HNNFSS plates with different thicknesses in the tension test
Fig.5  Simulated load-displacement curves of 316L stainless steel plate and HNNFSS plates with different thicknesses in the compression test
Fig.6  Load-displacement curves of 12 weeks healing for broken femur fixed by 316L stainless steel plates and lightweight HNNFSS plates and original femurs in the three point bending test
[1] Haudrechy P, Mantout B, Frappaz A, et al.Nickel release from stainless steel[J]. Contact Dermat., 1997, 37: 113
[2] Thyssen J P, Uter W, McFadden J, et al. The EU nickel directive revisited-future steps towards better protection against nickel allergy[J]. Contact Dermat., 2011, 64: 121
[3] Biodur?108 Alloy (Nickel-free high-nitrogen austenitic stainless steel alloy) [J]. Alloy Digest, 1999, (8): SS-757
[4] Gebeau R C, Brown R S.Biomedical implant alloy[J]. Adv. Mater. Process., 2001, 159: 46
[5] Yang K, Ren Y B.Nickel-free austenitic stainless steels for medical applications[J]. Sci. Technol. Adv. Mater., 2010, 11: 014105
[6] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids[J]. Mater. Sci. Eng., 2012, C32: 510
[7] Ren Y B, Zhao H C, Liu W P, et al.Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application[J]. Mater. Sci. Eng., 2016, C60: 293
[8] Ren Y B, Wan P, Liu F, et al.In vitro study on a new high nitrogen nickel-free austenitic stainless steel for coronary stents[J]. J. Mater. Sci. Technol., 2011, 27: 325
[9] Montanaro L, Cervellati M, Campoccia D, et al.No genotoxicity of a new nickel-free stainless steel[J]. Int. J. Artif. Organs, 2005, 28: 58
[10] Fini M, Giavaresi G, Giardino R, et al.A new austenitic stainless steel with a negligible amount of nickel: An in vitro study in view of its clinical application in osteoporotic bone[J]. J. Biomed. Mater. Res., 2004, 71B: 30
[11] Tschon M, Fini M, Giavaresi G, et al.Soft tissue response to a new austenitic stainless steel with a negligible nickel content[J]. Int. J. Artif. Organs, 2005, 28: 1003
[12] Kraft C N, Burian B, Perlick L, et al.Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: A comparative in vivo study[J]. J. Biomed. Mater. Res., 2001, 57A: 404
[13] Ren Y B, Yang K, Zhang B C.In vitro study of platelet adhesion on medical nickel-free stainless steel surface[J]. Mater. Lett., 2005, 59: 1785
[14] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial[J]. Mater. Sci. Eng., 2010, C30: 1183
[15] Fini M, Aldini N N, Torricelli P, et al.A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation[J]. Biomaterials, 2003, 24: 4929
[16] Alvarez K, Hyun S K, Nakano T, et al.In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Mater. Sci. Eng., 2009, C29: 1182
[17] Wang S T, Yang K, Shan Y Y, et al.Effects of cold deformation on microstructure and mechanical behavior of a high nitrogen austenitic stainless steel[J]. Acta Metall. Sin., 2007, 43: 713(王松涛, 杨柯, 单以银等. 冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J]. 金属学报, 2007, 43: 713)
[18] Wang S T, Yang K, Shan Y Y, et al.Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316L stainless steel[J]. Acta Metall. Sin., 2007, 43: 171(王松涛, 杨柯, 单以银等. 高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J]. 金属学报, 2007, 43: 171)
[19] Zhao H C, Ren Y B, Dong J H, et al.Effect of cold deformation on the friction-wear property of a biomedical nickel-free high-nitrogen stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 217
[20] ISO. ISO 5832-1: 2007 Implants for surgery-metallic materials, Part 1: Wrought stainless steel[S]. ISO, 2007
[21] ISO. ISO 5832-3: 1996 Implants for surgery-Metallic materials, Part 3: Wrought titanium 6-aluminium 4-vanadium alloy[S]. ISO, 1996
[22] ASTM. ASTM F2229: 2002 Standard specification for wrought, nitrogen strengthened 23manganese-21chromium-1molybdenum low-nickel stainless steel alloy bar and wire for surgical implants (UNS S29108)[S]. ASTM, 2002
[23] Bai F D, Liang B J, Zhu X H, et al.Study on biomechanics of stress shielding effects of fixed compression plate under loaded condition[J]. J. Norman Bethune Univ. Med. Sci., 1998, 24: 268.(白凤德, 梁铂坚, 朱兴华等. 加压钢板内固定负重状态下应力遮挡效应的生物力学实验研究[J]. 白求恩医科大学学报, 1998, 24: 268)
[24] Zhu X H, Wang X Y.Study on the stress shielding effects in internal fixation of fracture[J]. Test Technol. Test Mach., 1996, 36(3-4): 18(朱兴华, 王晓迎. 骨折内固定应力遮挡率研究[J]. 试验技术与试验机, 1996, 36(3-4): 18)
[25] Fang H, Zhu J M, Chen X G, et al.Clinical application of a new overlapping bone plate[J]. Shanghai J. Biomed. Eng., 2003, 24(4): 29(方浩, 朱建民, 陈新刚等. 新型迭形接骨板的临床应用[J]. 上海生物医学工程, 2003, 24(4): 29)
[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[3] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[4] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[5] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[6] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[7] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[8] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[9] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[10] MA Rongyao, MU Xin, LIU Bo, WANG Changgang, WEI Xin, ZHAO Lin, DONG Junhua, KE Wei. Effect of Hydrostatic Pressure on Corrosion Behavior of Ultra Pure Al Coupled with Ultra Pure Fe[J]. 金属学报, 2019, 55(12): 1593-1605.
[11] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[12] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[13] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[14] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[15] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
No Suggested Reading articles found!