Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (1): 11-20    DOI: 10.11900/0412.1961.2017.00231
Orginal Article Current Issue | Archive | Adv Search |
Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel
Yubin DU1,2, Xiaofeng HU1(), Haichang JIANG1, Desheng YAN1, Lijian RONG1
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016, China
Cite this article: 

Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel. Acta Metall Sin, 2018, 54(1): 11-20.

Download:  HTML  PDF(1061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Cr-Ni-Mo steel is widely used in various industrial fields, such as water turbine in hydroelectric power station, pressure vessel and shipbuilding section etc. due to its excellent performance in strength and impact toughness. In order to fulfill the needs of high-strength and good toughness, the quenching and following tempering are often used for this kind of Fe-Cr-Ni-Mo steel. In particular, the carbide precipitation in the tempering process is the key to determine the strength and toughness. In this work, TEM and SEM were used to investigate the effect of tempering time (10, 20, 40 and 120 min) on carbide evolution and mechanical properties of Fe-Cr-Ni-Mo steel with different V contents (0, 0.08% and 0.14%, mass fraction) after quenched at 860 ℃ and following tempering at 610 ℃. The results show that some M7C3 type carbides precipitated along martensite lath boundaries in quenched 0V steel, but no carbide in the quenched 008V and 014V steels. As a result, the strength of 0V steel (2060 MPa) is higher than 008V and 014V (1906 and 1857 MPa, respectively). After tempering for 20 min, a small amount of M3C type carbides were found on the lath boundaries in 0V steel. With tempering time increasing, M3C will transform into M23C6 carbide gradually. Both M3C and M23C6 type carbides exhibited a large size in range from 150 nm to 300 nm which were unfavorable to strength. As a result, the tensile strength of 0V steel decreases from 1197 MPa to 1088 MPa when tempering time increases from 20 min to 120 min. As for the 008V and 014V steels tempered for 20min, there are not only M3C type carbides precipitated in the grain boundary, but also M2C type carbides found inside the grains. The size of both carbides is no larger than 80 nm. With increasing tempering time, the M3C will dissolve gradually and there will precipitate much more M6C and MC. Compared with coarse M3C, the finer M2C, M6C and MC have better precipitation strengthening effect and less deterioration of ductility and toughness. Therefore, with increasing tempering time the strengthes of 008V and 014V steels keep stable and the elongation and impact toughnesses increase gradually. This indicates that the excellent combination of strength and impact toughness can be obtained in 008V and 014V steels.

Key words:  Fe-Cr-Ni-Mo      high-strength steel      tempering time      carbide      strength      low temperature impact toughness     
Received:  14 June 2017     
ZTFLH:  TG161  
  TG161  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00231     OR     https://www.ams.org.cn/EN/Y2018/V54/I1/11

Steel C Ni Mn Mo V Cr Si S P Fe
0V 0.30 4.48 0.79 0.63 - 1.05 0.19 0.010 0.0080 Bal.
008V 0.27 4.01 0.65 0.65 0.08 1.02 0.20 0.006 0.0060 Bal.
014V 0.27 3.50 0.49 0.65 0.14 1.02 0.22 0.009 0.0070 Bal.
Table 1  Chemical compositions of Fe-Cr-Ni-Mo steels (mass fraction / %)
Steel Tempering time Rm
MPa
Rp0.2
MPa
A
%
AKV
J
0V WQ 2060 1444 13.3 15
10 min 1256 1109 16.6 50
20 min 1197 1046 19.6 55
40 min 1124 987 17.1 60
120 min 1088 914 19.1 70
008V WQ 1906 1425 15.0 24
10 min 1292 1169 15.2 48
20 min 1261 1137 18.8 56
40 min 1254 1155 15.5 75
120 min 1235 1120 16.7 68
014V WQ 1857 1479 14.7 23
10 min 1279 1199 14.3 49
20 min 1286 1183 19.8 47
40 min 1303 1204 16.8 52
120 min 1277 1201 17.6 59
Table 2  Mechanical properties of 0V, 008V and 014V steels with different heat-treatment processes
Fig.1  SEM image of 0V steel quenched at 860 ℃
Fig.2  Bright field (a, c) and dark field (b, d) TEM images and corresponding SAED patterns (insets) of 0V steel (a, b) and 008Vsteel (c, d) quenched at 860 ℃ for 40 min
Fig.3  SEM image of 0V steel tempered at 610 ℃ for 20 min
Fig.4  Bright field (a) and dark field (b) TEM images and corresponding SAED pattern (inset) of carbides in 0V steel tempered at 610 ℃ for 20 min
Fig.5  Bright field (a, c, e) and dark field (b, d) TEM images and corresponding SAED patterns (insets) of carbides in 008V steel tempered at 610 ℃ for 20 min
Fig.6  Bright field (a, c) and dark field (b) TEM images and corresponding SAED pattern (insets) of carbides in 014V steel tempered at 610 ℃ for 20 min
Steel Quenched Tempering for 20 min Tempering for 120 min[18,20]
Carbide type Size / nm Carbide type Size / nm Carbide type Size / nm*
0V M7C3 300~450 M3C 150~300 M23C6 195
008V
-
-
M3C 150~210 M6C 35
M2C 50~80 M2C 157
M7C3 40~70
014V - - M3C 150~200 MC 20
M2C 20~40
Table 3  The types, sizes of carbides in 0V, 008V and 014V steels with different heat-treatment processes
Fig.7  SEM fractographs of 008V steel quenched at 860 ℃ (a, c) and then tempered at 610 ℃ for 20 min (b, d) after Charpy impact test at -50 ℃ (a, b) and tensile test at room temperature (c, d)
[1] Dong J, Zhou X S, Liu Y C, et al.Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Mater. Sci. Eng., 2017, A683: 215
[2] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483(戎咏华. 先进超高强度—高塑形Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[3] Kuo K H, Jia C L.Crystallography of M23C6 and M6C precipitated in a low alloy steel[J]. Acta Metall., 1985, 33: 991
[4] Janovec J, Vyrostkova A, Svoboda M.Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content[J]. Metall. Mater. Trans., 1994, 25A: 267
[5] Stevens R A, Flewitt P E J. The dependence of creep rate on microstructure in a γ' strengthened superalloy[J]. Acta Metall., 1981, 29: 867
[6] Misra R D K, Jia Z, O'Malley R, et al. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties[J]. Mater. Sci. Eng., 2011, A528: 8772
[7] Zhou S, Zhang K, Wang Y, et al.High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process[J]. Mater. Sci. Eng., 2011, A528: 8006
[8] Lee K H, Park S G, Kim M C, et al.Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents[J]. Mater. Sci. Eng., 2011, A529: 156
[9] Lee B S, Kim M C, Yoon J H, et al.Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application[J]. Int. J. Pres. Ves. Pip., 2010, 87: 74
[10] Mulholland M D, Seidman D N.Nanoscale Co-precipitation and mechanical properties of a high-strength low-carbon steel[J]. Acta Mater., 2011, 59: 1881
[11] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447(温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[12] Wang L J, Cai Q W, Wu H B, et al.Effects of tempering temperature on the microstructure and mechanical properties of 1500 MPa grade steel directly quenched[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1150(王立军, 蔡庆伍, 武会宾等. 回火温度对1500 MPa级直接淬火钢组织与性能的影响[J]. 北京科技大学学报, 2010, 32: 1150)
[13] Liu Q D, Liu W Q, Wang Z M, et al.3D Atom probe characterization of carbides precipitated in the Nb-V microalloyed steel[J]. Acta Metall. Sin., 2008, 44: 786(刘庆冬, 刘文庆, 王泽民等. Nb-V微合金钢中碳化物析出的三维原子探针表征[J]. 金属学报, 2008, 44: 786)
[14] Janovec J, Vyrostková A, Svoboda M, et al.Evolution of secondary phases in Cr-V low-alloy steels during aging[J]. Metall. Mater. Trans., 2004, 35A: 751
[15] Yan W, Zhu L, Sha W, et al.Change of tensile behavior of a high-strength low-alloy steel with tempering temperature[J]. Mater. Sci. Eng., 2009, A517: 369
[16] Vyrostková A, Kroupá A, Janovec J, et al.Carbide reactions and phase equilibria in low alloy Cr-Mo-V steels tempered at 773-993 K. Part I: Experimental measurements[J]. Acta Mater., 1998, 46: 31
[17] Thomson R C, Miller M K.Carbide precipitation in martensite during the early stages of tempering Cr-and Mo-containing low alloy steels[J]. Acta Mater., 1998, 46: 2203
[18] Wen T, Hu X F, Song Y Y, et al.Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Mater. Sci. Eng., 2013, A588: 201
[19] Zhang S H.Alloy-Steel [M]. Beijing: Metallurgical Industry Press, 1981: 37(章守华.合金钢[M]. 北京: 冶金工业出版社, 1981: 37)
[20] Wen T.Study on high-strength and high-toughness Fe-Cr-Ni-Mo based steel for gas cylinder application [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(温涛. 气瓶用高强高韧Fe-Cr-Ni-Mo系合金钢的研究 [D]. 沈阳: 中国科学院金属研究所, 2014)
[21] Inoue A, Masumoto T.Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels[J]. Metall. Trans., 1980, 11A: 739
[22] Janovec J, Svoboda M, Vyrostková A, et al.Time-temperature-precipitation diagrams of carbide evolution in low alloy steels[J]. Mater. Sci. Eng., 2005, A402: 288
[23] Zhang Y.Application of phase equilibrium thermodynamic method in alloy design for high carbon alloy steel with ultra fine carbides [D]. Dalian: Dalian Maritime University, 2007(张洋. 相平衡热力学方法在超细碳化物高碳合金钢合金设计中的应用 [D]. 大连: 大连海事大学, 2007)
[24] Xie Z J, Ma X P, Shang C J, et al.Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel[J]. Mater. Sci. Eng., 2015, A641: 37
[25] Trabadelo V, Giménez S, Gómez-Acebo T, et al.Critical assessment of computational thermodynamics in the alloy design of PM high speed steels[J]. Scr. Mater., 2005, 53: 287
[26] Schneider A, Inden G.Simulation of the kinetics of precipitation reactions in ferritic steels[J]. Acta Mater., 2005, 53: 519
[27] Asadabad M A, Kheirandish S, Novinrooz A J.Tempering behavior of 4.5Cr-2W-0.25V steel[J]. J. Iron Steel Res. Int., 2010, 17: 57
[28] Chen J D, Mo W L, Wang P.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186(陈俊丹, 莫文林, 王培. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[8] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!