Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1284-1302    DOI: 10.11900/0412.1961.2017.000269
Orginal Article Current Issue | Archive | Adv Search |
Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties
Xiao LIN1, Jun GE1, Shuilin WU2, Baohua LIU3, Huilin YANG1,4, Lei YANG1,4()
1 Institute of Orthopaedics, Soochow University, Suzhou 215006, China
2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
3 Department of Basic Medical Sciences, School of Medicine, Shenzhen University, Shenzhen 518060, China
4 International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China
Cite this article: 

Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties. Acta Metall Sin, 2017, 53(10): 1284-1302.

Download:  HTML  PDF(4646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Osteogenic capacity (i.e., properties that promote new bone formation around the implant) has long been a clinical requirement for most orthopedic implants. Recently, anti-infection or antibacterial property has increasingly become critical for orthopedic implants (especially without the use of antibiotics). Orthopedic implant materials with simultaneous osteogenic and anti-infection capacities are extremely promising for orthopedic applications, but such materials are not widely available to date and have only recently been researched. In this review article, the advances in metallic biomaterials with both osteogenic and anti-infection capacities were introduced considering of the wide application of metallic biomaterials in orthopedics. Firstly, numerous attractive metal formulations that exhibit both osteogenic and anti-infection capacities as well as surface modification strategies that enhance such capacities are introduced. Secondly, several possible mechanisms underlying the osteogenic and anti-infection properties are discussed. Finally, an outlook of this field is proposed.

Key words:  metallic biomaterial      surface modification      osteogenic      anti-infection      antibacterial     
Received:  04 July 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (Nos.81501858, 51672184 and 81622032), Jiangsu Innovation and Entrepreneurship Program and Jiangsu Provincial R&D Innovation Program (No.BY2014059-07) and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.000269     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1284

Material
Composition
Toxicity
Biodegradability Mechanical properties
Hardness
HV
Test
mode
E
GPa
YS
MPa
US
MPa
EL
%
Ti-Cu alloy[8,9] Ti-5%Cu
(mass fraction)
N N 369.5 C 1247.0 1707.9 15
Ti-Nb-Ag alloy[10] Ti26Nb5Ag
(atom fraction / %)
NA N 514 C 1240.5 5.4
Ti-Ag as cast[11,12] Ti-20Ag NA N 250 T 400 550 19
SUS 304-Cu SS[13]
304SS containing 1.5%~5.5% Cu
(mass fraction)
NA
N
240~270
T
570~625
Co-Cr-Mo-Cu[14]
Co-Cr-Mo with 1%~4% Cu
(mass fraction)
NA
N
274~298
T
310~440
447~620
10.7~18.5
Pure Mg
as cast[15,16]
99.9%Mg
(mass fraction)
Negligible Y 26 T 45 49 93 3
Mg-Ag alloy[17] Mg-2%Ag
(mass fraction)
Negligible Y 40.1 C 44 225
Mg-Cu alloy
as cast[18]
Mg-0.03%Cu
(mass fraction)
N Y 32 T 80
Mg-Nd-Zn-Zr alloy[19-21] Mg-3.130Nd-
0.164Zn-0.413Zr
Negligible Y T About 333 About 334 About 21
Zn extruded[22] 99.99%Zn
(mass fraction)
NA Y 25 T 130 About 180 55
Zn-1Mg alloy[22] Zn-0.95%Mg
(mass fraction)
N Y 70 T 180 250 11
Cortical bone[23] T
C
8~12 50~130
130~190
Table 1  Novel metallic biomaterials with osteogenic and antibacterial properties[8-23]
Fig.1  Microstructures of typical metallic materials with both osteogenic and anti-infection capabilities[12,17,18]
(a) microstructure of Ti-20Ag alloy[12]
(b) microstructure of Ti-20Cu alloy [12]
(c) microstructure analysis and XRD and EDS spectra of cast Mg4Ag alloy, in which a combination of Mg4Ag and Mg54Ag17 was identified as the main phases [17]
(d) SEM image of Mg-Cu alloy showing the morphology and EDS results of the second phase [18]
Fig.2  Osteogenic and anti-infection properties of a series of Mg-Cu alloys[18]
(a) adhesion of MC3T3-E1 cells and HUVECs in different extracts
(b) ALP activity of MC3T3-E1 cells after incubation for 4, 7 and 14 d in different extracts (**p<0.01 compared to pure Mg; #p<0.05 and ##p<0.01compared to the control)
(c) colony-forming unit(CFU)/mL of S. aureus after incubation with extractions of different samples in Hank's solution for various intervals
Fig.3  Microstructures of typical surface modifications with both osteogenic and anti-infection capabilities on metallic materials[61,66,72,77]
(a) TiO2 nanotube microstructure on the silver deposited surface [61]
(b) surface morphology of the micro-arc oxidized Cu-incorporated TiO2 coatings [66]
(c) SEM image of an FHA surface[72]
(d) cross-section of Cu containing calcium silicate coating on Ti metal[77]
Fig.4  Cross-sectional (a) and top (b) morphologies of the Cu/Zn co-substituted HA coatings [96]
Agent Antibacterial mechanism Biological benefit
Ag Disrupting functions of bacteria to form a nonculturable state[139-141] Not clear
Cu
Generation of reactive oxygen species[142];
Formation of cavities in the bacterial cell wall[143]
Preventing osteoporosis[144,145];
Promoting osteogenic differentiation[146];
Inducing vascularization[147-149]
Zn

Generation of reactive oxygen species[150];
Excessive uptake of Zn ions[151];
Inhibition of bacterial activities[152]
Synthesis and stabilization of proteins[153];
Constituent of antioxidant system[154];
Anti-inflammatory effect[113];
Bone formation and vascularization[113,155,156]
Chi
Chi/bacteria electrostatic interactions resulting in growth inhibition[157] and causing the leakage of intracellular constituents[158] Promoting growth and mineral rich matrix deposition of osteoblasts[159];
Accelerating osteogenic differentiation[122,123]
AP Disrupting the integrity of microbial membranes and subsequent cell lysis[160,161] Angiogenesis, modulation of cytokine/chemokine expression, wound healing[162,163]
Table 2  Antibacterial mechanisms and biological benefits of common antibacterial agents applied in the biomedical materials[113,122,123,139-163]
[1] Kurtz S M, Ong K L, Schmier J, et al.Future clinical and economic impact of revision total hip and knee arthroplasty[J]. J. Bone. Joint. Surg., 2010, 89(Suppl.3): 144
[2] Deysine M.Infections associated with surgical implants[J]. N. Engl. J. Med., 2004, 351: 193
[3] Zimmerli W.Prosthetic-joint-associated infections[J]. Best. Pract. Res. Clin. Rheumatol., 2006, 20: 1045
[4] Grainger D W, Van Der Mei H C, Jutte P C, et al. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices[J]. Biomaterials, 2013, 34: 9237
[5] Wiedel J D.Salvage of infected total knee fusion: The last option[J]. Clin. Orthop. Relat. Res., 2002, (404): 139
[6] Campoccia D, Montanaro L, Arciola C R.The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials, 2006, 27: 2331
[7] Neoh K G, Hu X F, Zheng D, et al.Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012, 33: 2813
[8] Zhang E L, Li F B, Wang H Y, et al.A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater. Sci. Eng., 2013, C33: 4280
[9] Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392
[10] Wen M, Wen C E, Hodgson P, et al.Fabrication of Ti-Nb-Ag alloy via powder metallurgy for biomedical applications[J]. Mater. Des., 2014, 56: 629
[11] Nakajo K, Takahashi M, Kikuchi M, et al.Inhibitory effect of Ti-Ag alloy on artificial biofilm formation[J]. Dent. Mater. J., 2014, 33: 389
[12] Takahashi M, Kikuchi M, Takada Y, et al.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dent. Mater. J., 2002, 21: 270
[13] Hong I T, Koo C H.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Mater. Sci. Eng., 2005, A393: 213
[14] Zhang E L, Liu C.A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property[J]. Mater. Sci. Eng., 2016, C69: 134
[15] Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta. Biomater., 2011, 7: 3515
[16] Robinson D A, Griffith R W, Dan S, et al.In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus[J]. Acta. Biomater., 2010, 6: 1869
[17] Tie D, Feyerabend F, Müller W D, et al.Antibacterial biodegradable Mg-Ag alloys[J]. Eur. Cell. Mater., 2013, 25: 284
[18] Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374
[19] Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
[20] Zhang X B, Yuan G Y, Niu J L, et al.Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J. Mech. Behav. Biomed. Mater., 2012, 9: 153
[21] Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[22] Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res., 2015, 103: 1632
[23] Bal B S, Rahaman M N.Orthopedic applications of silicon nitride ceramics[J]. Acta. Biomater., 2012, 8: 2889
[24] Tahal D, Madhavan K, Chieng L O, et al.Metals in spine[J]. World. Neurosurg., 2017, 100: 619
[25] Soultanis K C, Pyrovolou N, Zahos K A, et al.Late postoperative infection following spinal instrumentation: Stainless steel versus titanium implants[J]. J. Surg. Orthop. Adv., 2008, 17: 193
[26] Ren L, Yang K, Guo L, et al.Preliminary study of anti-infective function of a copper-bearing stainless steel[J]. Mater. Sci. Eng., 2012, C32: 1204
[27] Chai H W, Guo L, Wang X T, et al.Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2525
[28] Ren L, Wong H M, Yan C H, et al.Osteogenic ability of Cu-bearing stainless steel[J]. J. Biomed. Mater. Res., 2015, 103B: 1433
[29] Nagels J, Stokdijk M, Rozing P M.Stress shielding and bone resorption in shoulder arthroplasty[J]. J. Shoulder. Elb. Surg., 2003, 12: 35
[30] Kang M K, Moon S K, Kwon J S, et al.Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys[J]. Mater. Res. Bull., 2012, 47: 2952
[31] Shirai T, Tsuchiya H, Shimizu T, et al.Prevention of pin tract infection with titanium-copper alloys[J]. J. Biomed. Mater. Res., 2010, 91B: 373
[32] Zhang E L, Zheng L L, Liu J, et al.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J]. Mater. Sci. Eng., 2015, C46: 148
[33] Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985
[34] Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699
[35] Naji A, Harmand M.Study of the effect of the surface state on the cytocompatibility of a Co-Cr alloy using human osteoblasts and fibroblasts[J]. J. Biomed. Mater. Res., 1990, 24: 861
[36] Chen Q Z, Thouas G A.Metallic implant biomaterials[J]. Mater. Sci. Eng., 2015, R87: 1
[37] Marti A.Cobalt-base alloys used in bone surgery[J]. Injury, 2000, 31(Suppl.4): D18
[38] Wang S, Yang C G, Ren L, et al.Study on antibacterial performance of Cu-bearing cobalt-based alloy[J]. Mater. Lett., 2014, 129: 88
[39] Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461
[40] Liu Y H, Padmanabhan J, Cheung B, et al.Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses[J]. Sci. Rep., 2016, 6: 26950
[41] Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng. Online, 2013, 12: 62
[42] Zhang Q, Lin X, Qi Z R, et al.Magnesium alloy for repair of lateral tibial plateau defect in minipig model[J]. J. Mater. Sci. Technol., 2013, 29: 539
[43] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[44] Lin X, Tan L L, Wang Q, et al.In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model[J]. Mater. Sci. Eng., 2013, C33: 3881
[45] Lin X, Yang X M, Tan L L, et al.In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy[J]. Appl. Surf. Sci., 2014, 288: 718
[46] Li Y, Liu G W, Zhai Z J, et al.Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection[J]. Antimicrob. Agents. Chemother., 2014, 58: 7586
[47] Rahim M I, Eifler R, Rais B, et al.Alkalization is responsible for antibacterial effects of corroding magnesium[J]. J. Biomed. Mater. Res., 2015, 103A: 3526
[48] Feng H Q, Wang G M, Jin W H, et al.Systematic study of inherent antibacterial properties of magnesium-based biomaterials[J]. ACS. Appl. Mater. Interfaces, 2016, 8: 9662
[49] J?hn K, Saito H, Taipaleenm?ki H, et al.Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice[J]. Acta Biomater., 2016, 36: 350
[50] Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[51] He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3: 6676
[52] Lock J Y, Wyatt E, Upadhyayula S, et al.Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications[J]. J. Biomed. Mater. Res., 2014, 102A: 781
[53] Qin H, Cao H L, Zhao Y C, et al.In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014, 35: 9114
[54] Jin G D, Cao H L, Qiao Y Q, et al.Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids. Surf., 2014, 117B: 158
[55] Jin G D, Qin H, Cao H L, et al.Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35: 7699
[56] Fiedler J, Kolitsch A, Kleffner B, et al.Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: Proliferative response of osteoblasts and antibacterial effects[J]. Int. J. Artif. Organs., 2011, 34: 882
[57] Dan Z G, Ni H W, Xu B F, et al.Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492: 93
[58] Necula B S, Fratila-Apachitei L E, Zaat S A J, et al. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus[J]. Acta. Biomater., 2009, 5: 3573
[59] Necula B S, Van Leeuwen J P T M, Fratila-Apachitei L E, et al. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts[J]. Acta Biomater., 2012, 8: 4191
[60] Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706
[61] Das K, Bose S, Bandyopadhyay A, et al.Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants[J]. J. Biomed. Mater. Res., 2008, 87B: 455
[62] Uhm S H, Song D H, Kwon J S, et al.Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering[J]. J. Biomed. Mater. Res., 2014, 102B: 592
[63] Hu H, Zhang W, Qiao Y C, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta. Biomater., 2012, 8: 904
[64] Li Y, Xiong W, Zhang C, et al.Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies[J]. J. Biomed. Mater. Res., 2014, 102A: 3939
[65] Tian Y X, Cao H L, Qiao Y Q, et al.Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation[J]. Acta. Biomater., 2014, 10: 4505
[66] Wu Q J, Li J H, Zhang W J, et al.Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating[J]. J. Mater. Chem., 2014, 2B: 6738
[67] Hang R Q, Gao A, Huang X B, et al.Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes[J]. J. Biomed. Mater. Res., 2014, 102A: 1850
[68] Chen W, Oh S, Ong A P, et al.Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process[J]. J. Biomed. Mater. Res., 2007, 82A: 899
[69] Song W H, Ryu H S, Hong S H.Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2009, 88A: 246
[70] Huang Y, Zhang X J, Zhao R L, et al.Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate[J]. J. Mater. Sci., 2015, 50: 1688
[71] Fielding G A, Roy M, Bandyopadhyay A, et al.Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings[J]. Acta. Biomater., 2012, 8: 3144
[72] Ge X, Leng Y, Bao C Y, et al.Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants[J]. J. Biomed. Mater. Res., 2010, 95A: 588
[73] Pishbin F, Mouri?o V, Gilchrist J B, et al.Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system[J]. Acta Biomater., 2013, 9: 7469
[74] Li K, Xie Y T, Huang L P, et al.Antibacterial mechanism of plasma sprayed Ca2ZnSi2O7 coating against Escherichia coli[J]. J. Mater. Sci. Mater. Med., 2013, 24: 171
[75] Li K, Yu J M, Xie Y T, et al.Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2781
[76] Li B E, Liu X Y, Cao C, et al.Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver[J]. Appl. Surf. Sci., 2008, 255: 452
[77] Kalaivani S, Singh R K, Ganesan V, et al.Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal[J]. J. Mater. Chem., 2014, 2B: 846
[78] Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544
[79] Huang H L, Chang Y Y, Chen Y C, et al.Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium[J]. Thin Solid Films, 2013, 549: 108
[80] Chua P H, Neoh K G, Kang E T, et al.Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion[J]. Biomaterials, 2008, 29: 1412
[81] Zhao L, Hu Y, Xu D W, et al.Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion[J]. Colloids. Surf. Biointerf., 2014, 119B: 115
[82] Song L, Gan L, Xiao Y F, et al.Antibacterial hydroxyapatite/chitosan complex coatings with superior osteoblastic cell response[J]. Mater. Lett., 2011, 65: 974
[83] Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al.Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31: 9519
[84] Xiong J, Xu B F, Ni H W.Antibacterial and corrosive properties of copper implanted austenitic stainless steel[J]. Int. J. Min. Met. Mater., 2009, 16: 293
[85] Wan Y Z, Raman S, He F, et al.Surface modification of medical metals by ion implantation of silver and copper[J]. Vacuum, 2007, 81: 1114
[86] Tan A W, Pingguan-Murphy B, Ahmad R, et al.Review of titania nanotubes: Fabrication and cellular response[J]. Ceram. Int., 2012, 38: 4421
[87] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[88] Wu P G, Xie R C, Imlay K, et al.Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver[J]. Environ. Sci. Technol., 2010, 44: 6992
[89] Stani? V, Dimitrijevi? S, Anti?-Stankovi? J, et al.Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders[J]. Appl. Surf. Sci., 2010, 256: 6083
[90] Stani? V, Jana?kovi? D, Dimitrijevi? S, et al.Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering[J]. Appl. Surf. Sci., 2011, 257: 4510
[91] Kim T N, Feng Q L, Kim J O, et al.Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. J. Mater. Sci. Mater. Med., 1998, 9: 129
[92] Chung R J, Hsieh M F, Huang K C, et al.Anti-microbial hydroxyapatite particles synthesized by a sol-gel route[J]. J. Sol. Gel. Sci. Technol., 2005, 33: 229
[93] Matsumoto N, Sato K, Yoshida K, et al.Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions[J]. Acta Biomater., 2009, 5: 3157
[94] Singh R K, Kannan S.Synthesis, structural analysis, mechanical, antibacterial and Hemolytic activity of Mg2+ and Cu2+ co-substitutions in β-Ca3(PO4)2[J]. Mater. Sci. Eng., 2014, C45: 530
[95] Chung R J, Hsieh M F, Huang C W, et al.Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings[J]. J. Biomed. Mater. Res., 2006, 76B: 169
[96] Huang Y, Zhang X J, Mao H H, et al.Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method[J]. RSC Adv., 2015, 5: 17076
[97] Xie C M, Lu X, Wang K F, et al.Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 8580
[98] Cheng K, Weng W J, Wang H M, et al.In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings[J]. Biomaterials, 2005, 26: 6288
[99] Li J N, Song Y, Zhang S X, et al.In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy[J]. Biomaterials, 2010, 31: 5782
[100] Wiegand A, Buchalla W, Attin T.Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation[J]. Dent. Mater., 2007, 23: 343
[101] Hench L L.The story of Bioglass?[J]. J. Mater. Sci. Mater. Med., 2006, 17: 967
[102] Zhang D, Lepp?ranta O, Munukka E, et al.Antibacterial effects and dissolution behavior of six bioactive glasses[J]. J. Biomed. Mater. Res., 2010, 93A: 475
[103] Bellantone M, Coleman N J, Hench L L.Bacteriostatic action of a novel four-component bioactive glass[J]. J. Biomed. Mater. Res., 2000, 51A: 484
[104] Bellantone M, Williams H D, Hench L L.Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass[J]. Antimicrob. Agents. Chemother., 2002, 46: 1940
[105] Catauro M, Raucci M G, De Gaetano F, et al.Antibacterial and bioactive silver-containing Na2O CaO 2SiO2 glass prepared by sol-gel method[J]. J. Mater. Sci. Mater. Med., 2004, 15: 831
[106] Wu C T, Zhou Y H, Xu M C, et al.Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity[J]. Biomaterials, 2013, 34: 422
[107] Neel E A A, Ahmed I, Pratten J, et al. Characterisation of antibacterial copper releasing degradable phosphate glass fibres[J]. Biomaterials, 2005, 26: 2247
[108] Palza H, Escobar B, Bejarano J, et al.Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method[J]. Mater. Sci. Eng., 2013, C33: 3795
[109] Sánchez-Salcedo S, Shruti S, Salinas A J, et al.In vitro antibacterial capacity and cytocompatibility of SiO2-CaO-P2O5 meso-macroporous glass scaffolds enriched with ZnO[J]. J. Mater. Chem., 2014, 2B: 4836
[110] Lopez-Esteban S, Saiz E, Fujino S, et al.Bioactive glass coatings for orthopedic metallic implants[J]. J. Eur. Ceram. Soc., 2003, 23: 2921
[111] Fathi M H, Doostmohammadi A.Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J]. J. Mater. Process. Technol., 2009, 209: 1385
[112] Aina V, Perardi A, Bergandi L, et al.Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts[J]. Chem. Biol. Interact., 2007, 167: 207
[113] Hoppe A, Güldal N S, Boccaccini A R.A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32: 2757
[114] Zhai W Y, Lu H X, Chen L, et al.Silicate bioceramics induce angiogenesis during bone regeneration[J]. Acta Biomater., 2012, 8: 341
[115] Li H Y, Xue K, Kong N, et al.Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35: 3803
[116] Yu J M, Li K, Zheng X B, et al.In vitro and in vivo evaluation of zinc-modified Ca-Si-based ceramic coating for bone implants[J]. PLoS One, 2013, 8(3): e57564
[117] Hempel U, Hefti T, Kalbacova M, et al.Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies[J]. Clin. Oral. Implants. Res., 2010, 21: 174
[118] Stadlinger B, Hennig M, Eckelt U, et al.Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs[J]. Int. J. Oral. Maxillofac. Surg., 2010, 39: 585
[119] Scarano A, Piattelli M, Caputi S, et al.Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study[J]. J. Periodontol., 2004, 75: 292
[120] Al-Radha A S D, Dymock D, Younes C, et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J. Dent., 2012, 40: 146
[121] Cortizo M C, Oberti T G, Cortizo M S, et al.Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion[J]. J. Dent., 2012, 40: 329
[122] Yang X C, Chen X N, Wang H J.Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds[J]. Biomacromolecules, 2009, 10: 2772
[123] Costa-Pinto A R, Correlo V M, Sol P C, et al. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications[J]. Biomacromolecules, 2009, 10: 2067
[124] Liu X F, Guan Y L, Yang D Z, et al.Antibacterial action of chitosan and carboxymethylated chitosan[J]. J. Appl. Polym. Sci., 2001, 79: 1324
[125] No H K, Park N Y, Lee S H, et al.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. Int. J. Food Microbiol., 2002, 74: 65
[126] Tan H L, Ma R, Lin C C, et al.Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics[J]. Int. J. Mol. Sci., 2013, 14: 1854
[127] Song L, Xiao Y F, Gan L, et al.The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings[J]. Surf. Coat. Technol., 2012, 206: 2986
[128] Liu Y, Zheng Z, Zara J N, et al.The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel[J]. Biomaterials, 2012, 33: 8745
[129] Zhang X M, Li Z Y, Yuan X B, et al.Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater. Sci. Eng., 2013, C33: 2816
[130] Xu D W, Yang W H, Hu Y, et al.Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses[J]. Colloids. Surf. Biointerf., 2013, 110B: 225
[131] Schaer T P, Stewart S, Hsu B B, et al.Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection[J]. Biomaterials, 2012, 33: 1245
[132] Zhang F, Zhang Z B, Zhu X L, et al.Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion[J]. Biomaterials, 2008, 29: 4751
[133] Alcheikh A, Pavon-Djavid G, Helary G, et al.PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1745
[134] Sutha S, Dhineshbabu N R, Prabhu M, et al.Mg-doped hydroxyapatite/chitosan composite coated 316L stainless steel implants for biomedical applications[J]. J. Nanosci. Nanotechnol., 2015, 15: 4178
[135] Kazemzadeh-Narbat M, Noordin S, Masri B A, et al.Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium[J]. J. Biomed. Mater. Res., 2012, 100B: 1344
[136] Erakovi? S, Jankovi? A, Mati? I Z, et al.Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium[J]. Mater. Chem. Phys., 2013, 142: 521
[137] Erakovic? S, Jankovic? A, Veljovic? D, et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition[J]. J. Phys. Chem., 2012, 117B: 1633
[138] Erakovi? S, Veljovi? D, Diouf P N, et al.The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium[J]. Prog. Org. Coat., 2012, 75: 275
[139] Feng Q L, Wu J, Chen G Q, et al.A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. J. Biomed. Mater. Res., 2000, 52: 662
[140] Gordon O, Slenters T V, Brunetto P S, et al.Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction[J]. Antimicrob. Agents. Chemother., 2010, 54: 4208
[141] Jung W K, Koo H C, Kim K W, et al.Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli[J]. Appl. Environ. Microbiol., 2008, 74: 2171
[142] Grass G, Rensing C, Solioz M.Metallic copper as an antimicrobial surface[J]. Appl. Environ. Microbiol., 2011, 77: 1541
[143] Raffi M, Mehrwan S, Bhatti T M, et al.Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Ann. Microbiol., 2010, 60: 75
[144] Rico H, Roca-Botran C, Hernandez E R, et al.The effect of supplemental copper on osteopenia induced by ovariectomy in rats[J]. Menopause, 2000, 7: 413
[145] Yee C D, Kubena K S, Walker M, et al.The relationship of nutritional copper to the development of postmenopausal osteoporosis in rats[J]. Biol. Trace. Elem. Res., 1995, 48: 1
[146] Rodríguez J P, Rios S, González M.Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper[J]. J. Cell. Biochem., 2002, 85: 92
[147] Hu G F.Copper stimulates proliferation of human endothelial cells under culture[J]. J. Cell. Biochem., 1998, 69: 326
[148] Sen C K, Khanna S, Venojarvi M, et al.Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am. J. Physiol. Heart. Circ. Physiol., 2002, 282: H1821
[149] De Lima M, McMannis J, Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: A phase I/II clinical trial[J]. Bone. Marrow. Transpl., 2008, 41: 771
[150] Raghupathi K R, Koodali R T, Manna A C.Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27: 4020
[151] Boyd D, Li H, Tanner D A, et al.The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements[J]. J. Mater. Sci. Mater. Med., 2006, 17: 489
[152] Phan T N, Buckner T, Sheng J, et al.Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms[J]. Mol. Oral. Microbiol., 2004, 19: 31
[153] Tapiero H, Tew K D.Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomed. Pharmacother., 2003, 57: 399
[154] Prasad A S, Bao B, Beck F W J, et al. Antioxidant effect of zinc in humans[J]. Free Radical. Biol. Med., 2004, 37: 1182
[155] Yamaguchi M.Role of zinc in bone formation and bone resorption[J]. J. Trace. Elem. Exp. Med., 1998, 11: 119
[156] Kwun I S, Cho Y E, Lomeda R A R, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation[J]. Bone, 2010, 46: 732
[157] Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46: 1
[158] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules, 2003, 4: 1457
[159] Seol Y J, Lee J Y, Park Y J, et al.Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnol. Lett., 2004, 26: 1037
[160] Salditt T, Li C C, Spaar A.Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1483
[161] Chan D I, Prenner E J, Vogel H J.Tryptophan-and arginine-rich antimicrobial peptides: Structures and mechanisms of action[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1184
[162] Hale J D F, Hancock R E W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria[J]. Expert. Rev. Anti. Infect. Ther., 2007, 5: 951
[163] Jenssen H, Hancock R E.Therapeutic potential of HDPs as immunomodulatory agents[J]. Methods Mol. Biol., 2010, 618: 329
[164] Mouri?o V, Cattalini J P, Boccaccini A R.Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments[J]. J. R. Soc. Interface, 2012, 9: 401
[165] Habibovic P, Barralet J E.Bioinorganics and biomaterials: Bone repair[J]. Acta Biomater., 2011, 7: 3013
[166] Bose S, Fielding G, Tarafder S, et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends. Biotechnol., 2013, 31: 594
[167] Gorth D J, Puckett S, Ercan B, et al.Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. Int. J. Nanomedicine, 2012, 7: 4829
[168] An Y H, Friedman R J.Concise review of mechanisms of bacterial adhesion to biomaterial surfaces[J]. J. Biomed. Mater. Res., 1998, 43A: 338
[169] Woodling S E, Moraru C I.Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces[J]. J. Food Sci., 2005, 70: M345
[170] Puckett S D, Taylor E, Raimondo T, et al.The relationship between the nanostructure of titanium surfaces and bacterial attachment[J]. Biomaterials, 2010, 31: 706
[171] Mitik-Dineva N, Wang J, Truong V K, et al.Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness[J]. Curr. Microbiol., 2009, 58: 268
[172] Khang D, Kim S Y, Liu-Snyder P, et al.Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy[J]. Biomaterials, 2007, 28: 4756
[173] Webster T J, Ejiofor J U.Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo[J]. Biomaterials, 2004, 25: 4731
[174] Zhao G, Raines A L, Wieland M, et al.Requirement for both micron-and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography[J]. Biomaterials, 2007, 28: 2821
[175] Lim J Y, Dreiss A D, Zhou Z Y, et al.The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography[J]. Biomaterials, 2007, 28: 1787
[176] Biggs M J P, Richards R G, Gadegaard N, et al. Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage[J]. J. Biomed. Mater. Res., 2009, 91A: 195
[177] Watari S, Hayashi K, Wood J A, et al.Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves[J]. Biomaterials, 2012, 33: 128
[178] Ploux L, Anselme K, Dirani A, et al.Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation[J]. Langmuir, 2009, 25: 8161
[179] Absolom D R, Lamberti F V, Policova Z, et al.Surface thermodynamics of bacterial adhesion[J]. Appl. Environ. Microbiol., 1983, 46: 90
[180] Zhang L, Ning C Y, Zhou T, et al.Polymeric nanoarchitectures on Ti-based implants for antibacterial applications[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 17323
[181] Dalton H M, Poulsen L K, Halasz P, et al.Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure[J]. J. Bacteriol., 1994, 176: 6900
[182] Hogt A H, Dankert J, Feijen J A N. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial[J]. Microbiology, 1985, 131: 2485
[183] Hayashi H, Seiki H, Tsuneda S, et al.Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory[J]. J. Colloid Interface Sci., 2003, 264: 565
[184] Roosjen A, Norde W, Van Der Mei H C, et al. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation [A]. Characterization of Polymer Surfaces and Thin Films[M]. Berlin Heidelberg: Springer, 2006: 138
[185] Wilson C J, Clegg R E, Leavesley D I, et al.Mediation of biomaterial-cell interactions by adsorbed proteins: A review[J]. Tissue. Eng., 2005, 11: 1
[186] Liao H H, Andersson A S, Sutherland D, et al.Response of rat osteoblast-like cells to microstructured model surfaces in vitro[J]. Biomaterials, 2003, 24: 649
[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[4] Xianbo SHI,Dake XU,Maocheng YAN,Wei YAN,Yiyin SHAN,Ke YANG. Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2017, 53(2): 153-162.
[5] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[6] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[7] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[8] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[9] WANG Shuai, YANG Chunguang, XU Dake, SHEN Minggang, NAN Li, YANG Ke. EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(12): 1453-1460.
[10] XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1210-1216.
[11] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[12] XIANG Hongliang FAN Jinchun LIU Dong GUO Peipei. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
[J]. 金属学报, 2012, 48(9): 1081-1088.
[13] XIANG Hongliang FAN Jinchun LIU Dong GU Xing. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties
[J]. 金属学报, 2012, 48(9): 1089-1096.
[14] ZHANG Fenggang ZHU Xiaopeng WANG Mingyang LEI Mingkai. SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION[J]. 金属学报, 2011, 47(7): 958-964.
[15] DONG Deming GUAN Jianguo WANG Wei LI Wei ZHOU Jing. PREPARATION AND ELECTROMAGNETIC PROPERTIES OF MICROMETER Fe FLAKES MODIFIED WITH EPOXY RESIN[J]. 金属学报, 2009, 45(9): 1141-1145.
No Suggested Reading articles found!