Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 833-841    DOI: 10.11900/0412.1961.2016.00546
Orginal Article Current Issue | Archive | Adv Search |
Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys
Yaoxiang GENG1(),Xin LIN2,Jianbing QIANG3,Yingmin WANG3,Chuang DONG3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys. Acta Metall Sin, 2017, 53(7): 833-841.

Download:  HTML  PDF(2903KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The development of nanocrystalline Fe-Si-B-Nb-Cu alloys, commercially known as Finemet, has established a new approach to obtain soft-magnetic materials with high magnetic flux density. The material consists of α-Fe(Si) nanocrystals embedded in an amorphous matrix, which is made by means of partial crystallization. The composition and local structure of the precursor amorphous alloys are crucial for the formation of the unique nanocrystalline structure. The present study is devoted to understanding the composition characteristics and developing new compositions of Finemet alloys. Using the “cluster-plus-glue-atom” model and noticing the crystallization characteristic of Finemet alloy, a “dual-cluster” amorphous structure model is proposed. In this model, the precursor amorphous structure of Finemet alloy is considered to contain a mixture of the [(Si, B)-B2(Fe, Nb)8]Fe cluster derived from the Fe-B-Si-Nb bulk glassy alloys, and the [Si-Fe14](Cu1/13Si12/13)3 cluster from Fe3Si phase. A series of new Finemet nanocrystalline alloy compositions are designed by mixing [(Si, B)-B2(Fe, Nb)8]Fe and [Si-Fe14](Cu1/13Si12/13)3 cluster formulas with a ratio of 1∶1. Thermal analysis results show that [(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe+[Si-Fe14](Cu1/13Si12/13)3 (alloy composition: Fe74B7.33Si15.23Nb2.67Cu0.77) amorphous alloy exhibits a maximal temperature interval of about 192 K between the first and second crystallization peaks. Magnetic measurement results show that the Fe74B7.33Si15.23Nb2.67Cu0.77 nanocrystalline alloy exhibits optimal soft magnetic properties with a saturation magnetization Bs about 1.26 T, a coercive force Hc about 0.5 A/m and an effective permeability μe about 8.5×105 at 1 kHz after isothermal annealing at 813 K for 60 min. The soft magnetic properties of the new composition nanocrystalline alloys are better than that of the typical Finemet nanocrystalline alloy (Fe73.5Si13.5B9Cu1Nb3).

Key words:  Finemet nanocrystalline alloy      “dual-cluster” model      composition design      soft magnetic property     
Received:  05 December 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51671045 and 51601073), International Magnetic Confined Fusion Energy Development (Nos.2013GB107003 and 2015GB105003), Fundamental Research Funds for the Central Universities (No.DUT16ZD209) and Fund of the State Key Laboratory of Solidification Processing in NWPU (No.SKLSP201607)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00546     OR     https://www.ams.org.cn/EN/Y2017/V53/I7/833

Fig.1  Number of atoms per unit volume ρa distributions around Si and Fe atoms in Fe3Si phase (Fe1 and Fe2 represent different Fe atom positions in Fe3Si phase, r represent cluster radius)
Cluster formula Composition r / nm ρ / (gcm-3) e/u
[Si-Fe14]Fe Fe93.75Si6.25 0.2618 7.43 22.0
[Si-Fe14]Fe3 Fe94.44Si5.56 0.2618 7.45 24.8
[Si-Fe14]Si Fe87.5Si12.5 0.2618 7.30 21.7
[Si-Fe14]Si3 Fe77.78Si22.22 0.2618 7.08 23.9
[Si-Fe14]FeSi2 Fe83.33Si16.67 0.2618 7.20 24.3
[Si-Fe14]Fe2Si Fe88.89Si11.11 0.2618 7.33 24.5
Table 1  Cluster formulas, corresponding chemical compositions, r, densities ρ and valence electron number per unit cluster formula e/u of Fe-Si binary alloys
No. Dual cluster formula Composition
1 [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe75B6.83Si15.73Nb1.67Cu0.77
2 [(Si0.9B0.1)-B2Fe7.4Nb0.6]Fe[17]+[Si-Fe14] (Cu1/13Si12/13)3 Fe74.67B7Si15.56Nb2Cu0.77
3 [(Si0.85B0.15)-B2Fe7.3Nb0.7]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe74.33B7.17Si15.40Nb2.33Cu0.77
4 [(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe74B7.33Si15.23Nb2.67Cu0.77
5 [(Si0.75B0.25)-B2Fe7.1Nb0.9]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe73.67B7.5Si15.06Nb3Cu0.77
6 [(Si0.7B0.3)-B2Fe7Nb]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe73.33B7.67Si14.90Nb3.33Cu0.77
7 - Fe73.5Si13.5B9Cu1Nb3[2]
Table 2  New compositions after design (Nos.1~6) and typical composition (No.7) of Finemet nanocrystalline alloys
Fig.2  XRD spectra of samples No.1~No.7
Fig.3  DTA curves of samples No.1~No.7 (Tx1—onset crystallization temperature of first crystallization peak, Tp1—first maximum peak temperature, Tx2—onset crystallization temperature of second crystallization peak, Tp2—second maximum peak temperature, Tl—liquid temperature)
No. Tx1 Tp1 Tx2 Tp2 ΔTp Tl
1 768 784 934 954 170 1489
2 776 794 949 970 176 1477
3 787 805 962 982 177 1473
4 788 811 990 1003 192 1472
5 800 823 985 995 172 1461
6 809 833 983 992 159 1440
7 793 813 936 953 140 1440
Table 3  Tx1, Tp1, Tx2, Tp2, ΔTp and Tl of samples No.1~No.7 (K)
Fig.4  XRD spectra of Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous alloys after isothermal annealing at room temperature~793 K (a) and 813~973 K (b) for 60 min
Fig.5  HRTEM image and SAED pattern (inset) of Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous alloy after annealing at 713 K for 60 min
Fig.6  Bright-field TEM image (a) and SAED pattern (b) of Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous alloy after annealing at 873 K for 60 min
Fig.7  Bright-field TEM image and SAED patterns for region I (a) and SAED patterns for region II (b~d) of Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous alloy after annealing at 973 K for 60 min
Fig.8  Changes of grain size D with isothermal temperature for Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 nanocrystalline alloys
Fig.9  Changes of saturation magnetization Bs and coercive force Hc with annealing temperature for No.4 amorphous and nanocrystalline alloys
T / K D / nm Bs / T Hc / (Am-1) μe / 105
713 - 1.30 1.0 5.4
733 - 1.31 1.0 6.0
753 8 1.30 1.1 5.8
773 10 1.25 1.5 6.2
793 13 1.25 1.8 7.0
813 15 1.26 0.5 8.5
833 18 1.26 1.5 6.9
853 18 1.26 2.0 5.3
873 18 1.27 3.5 3.1
893 20 1.25 35 -
933 26 0.76 350 -
973 110 0.67 800 -
Table 4  Changes of D, Bs, Hc and effective permeability μe of Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous alloys at different annealing temperatures T
Fig.10  Changes of μe and Hc with different annealing temperatures for Fe74B7.33Si15.23Nb2.67Cu0.77 No.4 amorphous and nanocrystalline alloys
[1] Wang X L.From research to industrialization for amorphous and nanocrystalline soft magnetic alloys (1)[J]. Met. Funct. Mater., 1996, 3(5): 161
[1] (王新林. 非晶和纳米晶软磁合金从研究到产业化(一)[J]. 金属功能材料, 1996, 3(5): 161)
[2] Yoshizawa Y, Oguma S, Yamauchi K.New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. J. Appl. Phys., 1988, 64: 6044
[3] Chen G J, Wang X J.Recent advance in Finemet type nanocrystaline soft magnetie alloys[J]. Met. Funct. Mater., 2003, 10(4): 28
[3] (陈国钧, 王旭军. Finemet型FeCuNbSiB系纳米软磁合金的新进展[J]. 金属功能材料, 2003, 10(4): 28)
[4] Yoshizawa Y, Yamauchi K.Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Mater. Trans. JIM, 1990, 31: 307
[5] Ayers J D, Harris V G, Sprague J A, et al.On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9[J]. Acta Mater., 1998, 46: 1861
[6] Hono K, Ping D H, Ohnuma M, et al.Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy[J]. Acta Mater., 1999, 47: 997
[7] Wang Z R, Qiang J B, Wang Y M, et al.Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
[8] Han G, Qiang J B, Li F W, et al.The e/a values of ideal metallic glasses in relation to cluster formulae[J]. Acta Mater., 2011, 59: 5917
[9] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses[J]. Philos. Mag., 2014, 94: 2520
[10] Geng Y X, Wang Y M, Qiang J B, et al.Composition formulas of Fe-B binary amorphous alloys[J]. J. Non-Cryst. Solids, 2016, 432: 453
[11] Geng Y X, Zhang Z J, Wang Z R, et al.Magnetic properties and a structure model for high Fe content Fe-B-Si-Zr bulk glassy alloys[J]. J. Non-Cryst. Solids, 2016, 450: 1
[12] Geng Y X, Zhang Z J, Wang Y M, et al.Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys[J]. Acta Metall. Sin., 2017, 53: 369
[12] (耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53: 369)
[13] Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster] (glue atom)x for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63
[14] Geng Y X, Wang Y M, Qiang J B, et al.Fe-B-Si-Zr soft magnetic bulk glassy alloys[J]. Intermetallics, 2015, 67: 138
[15] Geng Y X.Composition design and properties investigation for Fe-B-Si based amorphous and nanocrystalline alloys [D]. Dalian: Dalian University of Technology, 2016
[15] (耿遥祥. Fe-B-Si系非晶/纳米晶合金的成分设计及性能研究[D]. 大连: 大连理工大学, 2016)
[16] Wang Q, Zha Q F, Liu E X, et al., Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model[J]. Acta Metall. Sin., 2012, 48: 1201
[16] (王清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48: 1201)
[17] Geng Y X, Wang Y M, Qiang J B, et al.Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
[17] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459)
[18] Ma Y P, Dong D D, Dong C, et al.Composition formulas of binary eutectics[J]. Sci. Rep., 2015, 5: 17880
[19] Mondal K, Murty B S.On the parameters to assess the glass forming ability of liquids[J]. J. Non-Cryst. Solids, 2005, 351: 1366
[20] Makino A, Men H, Kubota T, et al. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness [J]. J. Appl. Phys., 2009, 105: 07A308
[21] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets[J]. Prog. Mater. Sci., 1999, 44: 291
[22] Patterson A L.The Scherrer formula for X-ray particle size determination[J]. Phys. Rev., 1939, 56: 978
[23] Herzer G.Grain structure and magnetism of nanocrystalline ferromagnets[J]. IEEE Trans. Magn., 1989, 25: 3327
[24] Herzer G.Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Trans. Magn., 1990, 26: 1397
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[3] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[4] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[5] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[6] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[7] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[8] WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL[J]. 金属学报, 2012, 48(10): 1201-1206.
[9] YUAN Liang QIANG Jianbing PANG Chang WANG Yinmin WANG Qing DONG Chuang. COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC[J]. 金属学报, 2011, 47(8): 1003-1008.
[10] MA Rentao HAO Chuanpu WANG Qing REN Mingfa WANG Yingmin DONG Chuang. CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS[J]. 金属学报, 2010, 46(9): 1034-1040.
[11] CHEN Weiping FENG Shangshen SHAO Xianyi XIAO Shuqin LIU Yihua. SOFT MAGNETIC PROPERTIES AND GIANT MAGNETOIMPEDANCE EFFECT IN MAGNETIC FIELD–DEPOSITED FeCuCrVSiB FILMS[J]. 金属学报, 2009, 45(5): 615-619.
[12] WU Zeyu GUO Shengfeng LI Ning LIU Lin. INFLUENCE OF Co ON THE GLASS FORMING ABILITY AND SOFT MAGNETIC PROPERTY OF Fe–B–Y–Nb BULK AMORPHOUS ALLOY[J]. 金属学报, 2009, 45(2): 249-252.
[13] CHEN Wei-Rong; Qingyu Zhang. (Fe-B-Y)-based quinary bulk metallic glasses designed using cluster line criterion[J]. 金属学报, 2007, 43(8): 797-802 .
[14] CHEN Weiping; XIAO Shuqin; WANG Wenjing; LIU Yihua. MAGNETIC PROPERTIES AND GIANT MAGNETOIM-PEDANCE EFFECT IN AS DEPOSITED (Fe88Zr7B5)0.97Cu0.03 FILMS[J]. 金属学报, 2004, 40(12): 1295-1298 .
No Suggested Reading articles found!