Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 677-683    DOI: 10.11900/0412.1961.2016.00412
Orginal Article Current Issue | Archive | Adv Search |
Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels
Lining XU(),Jinyang ZHU,Bei WANG
Corrosion and Protection Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Lining XU,Jinyang ZHU,Bei WANG. Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels. Acta Metall Sin, 2017, 53(6): 677-683.

Download:  HTML  PDF(1282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

More than 60% corrosion failure of oil/gas pipeline happened in carbon steel pipeline transporting fluid containing CO2. Adding appropriate amount of Cr to carbon steel can greatly suppress localized corrosion. So, anti-CO2 low Cr steel and its corrosion mechanism become research hotspot. This work found that active-passive transition region occurred when low Cr steel was anodic polarized. But stable broad passive region like typical passivation was not found. This phenomenon was called semi-passivation. The anodic polarization behavior of low Cr steels with Cr content of 1%~5% and the effect of Cr content on semi-passivation in CO2 corrosion environment had been studied and discussed respectively. The anode potentiodynamic polarization curves of five kinds of low Cr steels in solutions with different pH values had been tested, subsequently the critical pH value which made the occurrence of the semi-passivation of low Cr steels with different Cr contents had been explored. The components of the corrosion product films on the low Cr steel samples polarized in solutions with various pH values had been compared through the Raman spectroscopy. The results showed that with the increase of Cr content, the semi-passivation characteristics was more obvious. The pH value of solutions in the CO2 environment contributes to the precipitation of Cr(OH)3. The Cr3+ ions dissolved from the substrate generate the corrosion films of Cr(OH)3 on the surface, resulting in the semi-passivation characteristics in the tests of anode potentiodynamic polarization.

Key words:  low Cr steel      Cr content      pH value      semi-passivation      Cr(OH)3     
Received:  13 September 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00412     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/677

Steel C Cr Mo Si Mn S P Fe
1Cr 0.07 1.01 0.16 0.20 0.52 0.005 0.004 Bal.
2Cr 0.05 2.06 0.18 0.14 0.53 0.004 0.003 Bal.
3Cr 0.07 2.96 0.15 0.20 0.55 0.003 0.003 Bal.
4Cr 0.05 4.06 0.21 0.13 0.53 0.002 0.009 Bal.
5Cr 0.07 5.00 0.15 0.20 0.55 0.004 0.005 Bal.
Table 1  Chemical compositions of low Cr steels(mass fraction / %)
Fig.1  Effects of Cr contents on anode potentiodynamic polarization curves of low Cr steels (Eps—potential that the current density begins to drop, Epf—potential that the current density begins to rise)
Fig.2  Comparisons of the semi-passivation potential range (|Eps-Epf|) and the percentage of current decline (imax-imin)/imax of low Cr steels with different Cr contents (imax—current density at the potential of Eps, imin—current density at the potential of Epf)
Fig.3  Anode potentiodynamic polarization curves of 1Cr (a), 2Cr (b), 3Cr (c), 4Cr (d) and 5Cr (e) steels in different solution pH values
Fig.4  Raman spectroscopies of the corrosion product films on 3Cr steel polarized from corrosion potential to -500 mV in solutions with pH=5.6 (a) and pH=5.0 (b)
[1] Zhang Z H, Huang Z Y, Sun Y N, et al.Development of 3Cr series oil pipes with good CO2 and H2S corrosion resistant properties[J]. Baosteel Technol., 2006, (3): 5
[1] (张忠铧, 黄子阳, 孙元宁等. 3Cr抗CO2和H2S腐蚀系列油套管开发[J]. 宝钢技术, 2006, (3): 5)
[2] Liang M H, Zhao G X, Feng Y R, et al.The influence of Cr on CO2 corrosion behavior of P110 steel[J]. J. Mater. Eng., 2006, (suppl.1): 31
[2] (梁明华, 赵国仙, 冯耀荣等. 添加Cr元素对P110钢CO2腐蚀行为的影响[J]. 材料工程, 2006, (增刊1): 31)
[3] Xu L N, Wang B, Zhu J Y, et al.Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
[4] Pfennig A, Kranzmann A.Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water[J]. Corros. Sci., 2012, 65: 441
[5] Wu Q L, Zhang Z H, Dong X M, et al.Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments[J]. Corros. Sci., 2013, 75: 400
[6] Ko M, Ingham B, Laycock N, et al.In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels[J]. Corros. Sci., 2014, 80: 237
[7] Kermani B, Gonzales J C, Turconi G L, et al.In-field corrosion performance of 3%Cr steels in sweet and sour downhole production and water injection [A]. Corrosion 2004[C]. New Orleans, LA: NACE International, 2004: 04111
[8] Nyborg R, Dugstad A.Understanding and prediction of mesa corrosion attack [A]. Corrosion 2003[C]. San Diego, CA: NACE International, 2003: 03642
[9] Nice P I, Ueda M.The effect of microstructure and chromium alloying content to the corrosion resistance of low-alloy steel well tubing in seawater injection service [A]. Corrosion 1998[C]. San Diego, CA: NACE International, 1998: 98003
[10] Ueda M, Takabe H.Corrosion resistance of low Cr bearing steel in sour and sweet environments [A]. Corrosion 2002[C]. Denver, CO: NACE International, 2002: 02041
[11] Kermani B, Dougan M, Gonzales J C, et al.Development of low carbon Cr-Mo steels with exceptional corrosion resistance for oilfield applications [A]. Corrosion 2001[C]. Houston, TX: NACE International, 2001: 01065
[12] Paolinelli L D, Simison S N, Pérez T E.The influence of Cr content on the efficiency of inhibitor of C-Mn steel CO2 corrosion [A]. Corrosion 2006[C]. San Diego, CA: NACE International, 2006: 06369
[13] Paolinelli L D, Simison S N, Pérez T E.The influence of steel microstructure, chemical composition and precorrosion on CO2 corrosion inhibitor efficiency [A]. Corrosion 2007[C]. Nashville, TN: NACE International, 2007: 07311
[14] Scoppio L, Piccolo E L, Cristofaro N D, et al.Corrosion problem and its countermeasure of 3Cr production tubing in NaCl completion brine on the Statfjord field [A]. Corrosion 2006[C]. San Diego, CA: NACE International, 2006: 06134
[15] Ueda M, Takabe H, Nice P I.The development and implementation of a new alloyed steel for oil and gas production wells [A]. Corrosion 2000[C]. Orlando, FL: NACE International, 2000: 00154
[16] Kermani B, Gonzales J C, Turconi G L, et al.Window of application and operational track record of low carbon 3Cr steel tubular [A]. Corrosion 2006[C]. San Diego, CA: NACE International, 2006: 06133
[17] Chen C F, Lu M X, Zhao G X, et al.The ion passing selectivity of CO2 corrosion scale on N80 tube steel [A]. Corrosion 2003[C]. San Diego, CA: NACE International, 2003: 03342
[18] Ueda M, Takabe H.The formation behavior of corrosion protective films of low Cr bearing steels in CO2 environments [A]. Corrosion 2001[C]. Houston, TX: NACE International, 2001: 01066
[19] Chen C F, Lu M X, Sun D B, et al.Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system[J]. Corrosion, 2005, 61: 594
[20] Guo S Q, Xu L N, Zhang L, et al.Corrosion of alloy steels containing 2% chromium in CO2 environments[J]. Corros. Sci., 2012, 63: 246
[21] Zhu J Y, Xu L N, Lu M X, et al.Cathodic reaction mechanism of 3Cr low alloy steel corroded in CO2-saturated high salinity solutions[J]. Int. J. Electrochem. Sci., 2015, 10: 1434
[22] Dugstad A.Fundamental aspects of CO2 metal loss corrosion-Part I: Mechanisms [A]. Corrosion 2006[C]. San Diego, CA: NACE International, 2006: 06111
[23] Sidorin D, Pletcher D, Hedges B.The electrochemistry of 13% chromium stainless steel in oilfield brines[J]. Electrochim. Acta, 2005, 50: 4109
[24] Kocijan A, Donik ?, Jenko M.Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions[J]. Corros. Sci., 2007, 49: 2083
[25] Jung R H, Tsuchiya H, Fujimoto S.XPS characterization of passive films formed on type 304 stainless steel in humid atmosphere[J]. Corros. Sci., 2012, 58: 62
[26] Ueda M, Ikeda A.Effect of microstructure and Cr content in steel on CO2 corrosion [A]. Corrosion 1996[C]. Denver, Colorado: NACE International, 1996: 96013
[1] Dan DONG,Bailing JIANG,Meng GUO,Chao YANG. Study on Nano-Crystallization Mechanism and Tribological Performance of Amorphous Carbon-Based Coatings[J]. 金属学报, 2017, 53(7): 879-887.
[2] CHEN Xu LI Xiaogang DU Cuiwei LIANG Ping. CREVICE CORROSION BEHAVIOR OF THE STEEL X70 UNDER CATHODIC POLARIZATION[J]. 金属学报, 2008, 44(12): 1431-1438.
[3] ZENG Rongchang; ZHOU Wanqiu; HAN Enhou; KE Wei. Effect of ph values on as-extruded magnesium alloy AM60[J]. 金属学报, 2005, 41(3): 307-311 .
[4] LU Minxu;LIU Xiaokun;WANG Jianjun;FU Xiangjiong;ZHENG Xiulin Northwestern Polytechnical University; Xi'an. EFFECT OF HEAT TREATMENT ON CRACK PROPAGATING RATE OF GC-4 STEEL FROM CORROSION FATIGUE OR STRESS CORROSION IN VARIOUS MEDIA[J]. 金属学报, 1991, 27(6): 115-121.
No Suggested Reading articles found!