Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 447-454    DOI: 10.11900/0412.1961.2016.00389
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃
Bing CHEN1,2,Changyuan GAO1,2,Jiao HUANG1,2,Yajing MAO1,2,Meiyi YAO1,2(),Jinlong ZHANG1,2,Bangxin ZHOU1,2,Qiang LI1,2
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
Cite this article: 

Bing CHEN,Changyuan GAO,Jiao HUANG,Yajing MAO,Meiyi YAO,Jinlong ZHANG,Bangxin ZHOU,Qiang LI. Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃. Acta Metall Sin, 2017, 53(4): 447-454.

Download:  HTML  PDF(7407KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear power reactors due to their low thermal neutron cross-section, good mechanical properties and corrosion resistance. The waterside corrosion is one of main factors that influence the service life of zirconium alloys. The corrosion of zirconium alloys occurs at the oxide/metal (O/M) interface, so the characteristics of the oxide film do have an impact on the oxidation process of zirconium alloys, which are affected by the oxidation behavior of second phase particles (SPPs) in zirconium alloys. E110 (Zr-1Nb, mass fraction, %) and M5 (Zr-1Nb-0.16O) alloys are Zr-Nb series alloys used in commercial presently. The major SPPs in Zr-Nb series alloys are bcc β-Nb. β-Nb SPPs in zirconium alloys are very fine, and it is inconvenient to analyze their oxidation processes due to the effect of α-Zr matrix. Therefore, based on the composition and crystal structure of β-Nb, two kinds of β-(Nb, Zr) SPPs alloys, 90Nb-10Zr and 50Nb-50Zr alloys were prepared by vacuum non-consumable arc smelting, and were corroded in autoclave with deionized water at 360 ℃ and 18.6 MPa for 11 d. XRD was used to analyze the crystal structure and phase composition of β-(Nb, Zr) specimens before and after oxidation. SEM and TEM equipped with EDS were used to investigate the microstructures of the external surface and the cross-section of oxide layers. Results show that the 90Nb-10Zr and 50Nb-50Zr alloys are oxidized into amorphous and crystalline oxides. The crystalline oxide formed on 90Nb-10Zr alloy is monoclinic Nb2O5, but the crystalline oxide formed on 50Nb-50Zr alloy is tetragonal (Zr, Nb)O2.

Key words:  zirconium alloy      β-(NbZr) alloy      corrosion     
Received:  26 August 2016     
Fund: Supported by National Natural Science Foundation of China (No.51471102) and National Advanced Pressurized Water Reactor Project of China (No.2011ZX06004-023)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00389     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/447

Fig.1  XRD spectra of the 90Nb-10Zr (a) and 50Nb-50Zr (b) alloys before corrosion
Fig.2  Microstructures of the as-cast 90Nb-10Zr (a) and 50Nb-50Zr (b) alloys
Fig.3  SEM images of the external surface of oxide films on 90Nb-10Zr (a) and 50Nb-50Zr (b) alloys corroded in deionized water at 360 ℃, 18.6 MPa for 11 d
Fig.4  XRD spectra of 90Nb-10Zr (a) and 50Nb-50Zr(b) alloys corroded in deionized water at 360 ℃, 18.6 MPa for 11 d
Fig.5  TEM image of the cross-sectional oxide film on 90Nb-10Zr alloy corroded in deionized water at 360 ℃, 18.6 MPa for 11 d (Areas A and C are shown according to different contrast and morphology from the surrounding area, and area B is the observation area of Fig.6)
Fig.6  Magnified TEM (a) and HRTEM (b) images of the oxide film on 90Nb-10Zr alloy in deionized water at 360 ℃, 18.6 MPa for 11 d(a) magnified TEM image of area B in Fig.5 (Insets show SAED patterns of position 1 with monoclin- ic structure Nb2O5 and position 2 with amorphous structure)(b) HRTEM image of position 3 in Fig.6a (Inset shows FFT image of square area with monoclinic structure Nb2O5)
Fig.7  Analyses of the needle-like oxide on 90Nb-10Zr alloy corroded in deionized water at 360 ℃, 18.6 MPa for 11 d(a) TEM image of the needle-like oxide(b) SAED pattern of position 4 with monoclin- ic structure Nb2O5 in Fig.7a(c) EDS of position 4 in Fig.7a
Fig.8  HAADF image of the oxide film on 50Nb-50Zr alloy corroded in deionized water at 360 ℃, 18.6 MPa for 11 d (HAADF—high-angle annular dark field)
Position Nb Zr O
1 63.65 4.74 31.62
2 67.50 3.81 28.69
3 61.02 4.10 34.88
Table 1  EDS results of positions 1, 2 and 3 in Fig.6a(atomic fraction / %)
Fig.9  TEM image and corresponding SAED patterns (insets) (a), and EDS results of seven positions in Fig.9a (b) of the oxide film on the 50Nb-50Zr alloy corroded in deionized water at 360 ℃, 18.6 MPa for 11 d
Fig.10  HRTEM and corresponding FFT images of positions 2 (a), 3 (b) and 6 (c) at the layer 1 of oxide film on 50Nb-50Zr alloy in Fig.9a
[1] Zhou W J, Zhou B X, Miao Z, et al.Development of Chinese advanced zirconium alloys[J]. At. Energy Sci. Technol., 2005, 39(Suppl.): 2
[1] (赵文金, 周邦新, 苗志等. 我国高性能锆合金的发展[J]. 原子能科学技术, 2005, 39(增刊): 2)
[2] Bojinov M, Karastoyanov V, Kinnunen P, et al.Influence of water chemistry on the corrosion mechanism of a zirconium-niobium alloy in simulated light water reactor coolant conditions[J]. Corros. Sci., 2010, 52: 54
[3] Nikulina A V, Markelov V A, Peregud M M.Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295[C]. West Conshohocken, Philadelphia: American Society for Testing and Materials, 1996: 785
[4] Müller S, Lanzani L.Corrosion of zirconium alloys in concentrated lithium hydroxide solutions[J]. J. Nucl. Mater., 2013, 439: 251
[5] Anada H, Takeda K.Microstructure of oxides on zircaloy-4, 1.0 Nb zircaloy-4, and zircaloy-2 formed in 10.3-MPa steam at 673 K [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295[C]. West Conshohocken, Philadelphia: American Society for Testing and Materials, 1996: 35
[6] Perkins R A, Busch R A.Corrosion of zircaloy in the presence of LiOH [A]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132[C]. Philadelphia: American Society for Testing and Materials, 1991: 595
[7] Shebaldov P V, Peregud M M, Nikulina A V, et al.E110 alloy cladding tube properties and their interrelation with alloy structure-phase condition and impurity content [A]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354[C]. Philadelphia: American Society for Testing and Materials, 2000: 545
[8] Sun F T, Yao M Y, Xu L, et al.Effect of adding dilute Si on corrosion resistance of zirconium alloys[J]. J. Shanghai Univ.(Nat. Sci.), 2015, 21: 182
[8] (孙风涛, 姚美意, 徐龙等. 添加微量Si对锆合金耐腐蚀性能的影响[J]. 上海大学学报(自然科学版), 2015, 21: 182)
[9] Kim H G, Choi B K, Park J Y, et al.Analysis of oxidation behavior of the β-Nb phase formed in Zr-1.5Nb alloy by using the HVEM[J]. J. Alloys Compd., 2009, 481: 867
[10] Yang W D.Reactor Materials Science [M]. Beijing: Atomic Energy Press, 2000: 19
[10] (杨文斗. 反应堆材料学 [M]. 北京: 原子能出版社, 2000: 19)
[11] Sabol G P, Comstock R J, Nayak U P.Effect of dilute alloy additions of molybdenum, niobium, and vanadium on zirconium corrosion [A]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354[C]. Philadelphia: American Society for Testing and Materials, 2000: 525
[12] Li Q, Liang X, Peng J C, et al.Oxidation behavior of the β-Nb phase precipitated in Zr-2.5Nb alloy[J]. Acta Metall. Sin., 2011, 47: 893
[12] (李强, 梁雪, 彭剑超等. Zr-2.5Nb合金中β-Nb相的氧化过程[J]. 金属学报, 2011, 47: 893)
[13] Gong W J, Zhang H L, Wu C F, et al.The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys[J]. Corros. Sci., 2013, 77: 391
[14] Proff C, Abolhassani S, Lemaignan C.Oxidation behaviour of binary zirconium alloys containing intermetallic precipitates[J]. J. Nucl. Mater., 2011, 416: 125
[15] Proff C, Abolhassani S, Lemaignan C.Oxidation behaviour of zirconium alloys and their precipitates——A mechanistic study[J]. J. Nucl. Mater., 2013, 432: 222
[16] Pêcheur D, Lefebvre F, Motta A T, et al.Precipitate evolution in the zircaloy-4 oxide layer[J]. J. Nucl. Mater., 1992, 189: 318
[17] Pêcheur D.Oxidation of β-Nb and Zr(Fe, V)2 precipitates in oxide films formed on advanced Zr-based alloys[J]. J. Nucl. Mater., 2000, 278: 195
[18] Yilmazbayhan A, Breval E, Motta A T, et al.Transmission electron microscopy examination of oxide layers formed on Zr alloys[J]. J. Nucl. Mater., 2006, 349: 265
[19] Yao M Y, Gao C Y, Huang J, et al.Oxidation behavior of β-Nb precipitates in Zr-1Nb-0.2Bi alloy corroded in lithiated water at 360 ℃[J]. Corros. Sci., 2015, 100: 169
[20] Cao X X.Study on the corrosion behavior of the second phase particles in zirconium alloy [D]. Shanghai: Shanghai University, 2010
[20] (曹潇潇. 锆合金中第二相腐蚀行为研究 [D]. 上海: 上海大学, 2010)
[21] Huang J, Yao M Y, Gao C Y, et al.Analysis of the oxidized surface of 90Nb-10Zr alloy after exposure to lithiated water with 0.01 M LiOH at 360 ℃/18.6 MPa[J]. Corros. Sci., 2016, 104: 269
[22] Shen Y F.Effect of β-quenching and annealing treatments on the corrosion resistance of zircaloy-4 [D]. Shanghai: Shanghai University, 2012
[22] (沈月锋. β相水淬及退火处理对Zr-4合金耐腐蚀性能的影响 [D]. 上海: 上海大学, 2012)
[23] Liang P Y, Dupin N, Fries S G, et al.Thermodynamic assessment of the Zr-O binary system[J]. Z. Metallk., 2001, 92: 747
[24] Pérez R J, Massih A R.Thermodynamic evaluation of the Nb-O-Zr system[J]. J. Nucl. Mater., 2007, 360: 242
[25] Ondik H M, McMurdie H F. Phase Diagrams for Zirconium and Zirconia Systems[M]. Ohio: The American Ceramic Society, 1998: 145
[26] Cambridge U O.The Interactive Ellingham Diagram, Dissemination of IT for the Promotion of Materials Science,
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[5] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!