Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (5): 567-574    DOI: 10.11900/0412.1961.2016.00307
Orginal Article Current Issue | Archive | Adv Search |
Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint
Dawei WANG,Shichao XIU()
School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint. Acta Metall Sin, 2017, 53(5): 567-574.

Download:  HTML  PDF(6361KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Q235A mild steel and AISI304 austenite stainless steel were subjected to solid diffusion welding by vacuum diffusion bonding approach to investigate the influence of welding temperature on the interfacial morphology, microstructural constituents and mechanical properties. The results show that the single ferrite layer (zone II) and carbon-enriched layer (zone III) were formed nearby the bonding interface of Q235A mild steel and AISI304 austenite stainless steel, and heterogeneous microstructure on both sides of interface formed a common grain boundary by diffusion. The strength and toughness of the bonded joint reached the highest values, for welding temperature of approximately 850 ℃, welding pressure of beyond 10 MPa, and welding time of approximately 60 min, which was larger than those of the Q235A mild steel layer. Otherwise, the Cr23C6 carbide easily formed at a relatively lower temperature (≤800 ℃), whereas the secondary carbides and intermetallic compounds formed at a relatively higher temperature (≥900 ℃). Both cases would dramatically deteriorate the strength-toughness of the bonded joint. Therefore, it was proposed that the brittle precipitate phases can be effectively avoided by controlling the welding temperature to approximately 850 ℃, thus ensuring the resulting performance of the bonded joint.

Key words:  mild steel      austenite stainless steel      vacuum diffusion bonding      interfacial microstructure      carbide      intermetallic compound     
Received:  18 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51375083)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00307     OR     https://www.ams.org.cn/EN/Y2017/V53/I5/567

Material Cr Ni C Si Mn P S Fe
AISI304 18.19 8.34 0.05 0.47 1.22 0.03 0.02 Bal.
Q235A - - 0.22 0.30 0.43 0.04 0.05 Bal.
Table 1  Chemical compositions of AISI304 stainless steel and Q235A mild steel (mass fraction / %)
Fig.1  EBSD image near the Q235A mild steel/AISI304 stainless steel diffusion-bonding interface at welding temperature of 850 ℃ (Green line: small angle grain boundary, θ=2°~15°.Black line: high angle grain boundary, θ>15°)
Fig.2  OM images of the Q235A mild steel/AISI304 stainless steel diffusion-boned joint at different temperatures (I—ferrite and pearlite, II—single ferrite, III—fine-grained austenite, IV—coarse-grained austenite) (a) 800 ℃ (b) 850 ℃ (c) 900 ℃
Fig.3  Low (a) and high (b) magnified SEM images and XRD spectra (c, d) of the Q235A mild steel/AISI304 stainless steel at diffusion-bonded joint at welding temperature of 900 ℃
Point C O Si Cr Mn Fe Ni
A 0.05 0.25 0.11 9.24 0.77 88.75 0.82
B 0.08 0.40 0.13 9.46 0.79 88.02 1.02
C 0.09 0.35 0.14 9.30 0.80 88.20 1.12
Table 2  EDS results of points A~C in Fig.3b (mass fraction / %)
Fig.7  Element distributions of the Q235A mild steel/AISI304 stainless steel diffusion-boned joint at temperatures of 850 ℃ (a) and 900 ℃ (b)
Fig.5  Microhardness distributions of the Q235A mild steel/AISI304 stainless steel diffusion-boned interface at different temperatures
Fig.6  Tensile specimens of the Q235A mild steel/AISI304 stainless steel diffusion-boned joint at different temperatures
  
Sample σb σs δ Ak
MPa MPa % (Jcm-2)
AISI304 785 320 49.5 180.0
Q235A 420 235 29.0 120.0
1# (800 ℃) 425±1 240±1 16.0±0.2 78.8±0.5
2# (850 ℃) 425±1 240±1 28.5±0.3 119.2±0.5
3# (900 ℃) 440±2 245±2 18.9±0.3 79.4±0.5
Table 3  Room temperature mechanical properties of base metals and three samples
Fig.7  Low (a, c, e) and corresponding high (circle area) (b, d, f) magnified fracture features of impact samples of Q235A mild steel/AISI304 stainless steel diffusion-bonding joint at welding temperatures of 800 ℃ (a, b), 850 ℃ (c, d) and 900 ℃ (e, f)
[1] Khorrami M S, Mostafaei M A, Pouraliakbar H, et al.Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints[J]. Mater. Sci. Eng., 2014, A608: 35
[2] Mas F, Martin G, Lhuissier P, et al.Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel[J]. Mater. Sci. Eng., 2016, A667: 156
[3] Khalifeh A R, Dehghan A, Hajjari E.Dissimilar joining of AISI 304L/St37 steels by TIG welding process[J]. Acta. Metall. Sin.(Engl. Lett.), 2013, 26: 721
[4] Torkamany M J, Sabbaghzadeh J, Hamedi M J.Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Mater. Des., 2012, 34: 666
[5] Haneklaus N, Reuven R, Cionea C, et al.Tube expansion and diffusion bonding of 316L stainless steel tube-to-tube sheet joints using a commercial roller tube expander[J]. J. Mater. Process. Technol., 2016, 234: 27
[6] Kurt B, ?alik A.Interface structure of diffusion bonded duplex stainless steel and medium carbon steel couple[J]. Mater. Charact., 2009, 60: 1035
[7] Atabaki M M, Bajgholi M E, Dehkordi E H.Partial transient liquid phase diffusion bonding of zirconium alloy (Zr-2.5Nb) to stainless steel 321[J]. Mater. Des., 2012, 42: 172
[8] Deng Y Q, Sheng G M, Yin L J.Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer[J]. Rare Met. Mater. Eng., 2015, 44: 1041
[9] Kundu S, Chatterjee S.Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Mater. Sci. Eng., 2006, A425: 107
[10] Balasubramanian M.Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding[J]. Mater. Des., 2015, 77: 161
[11] Yuan X J, Kang C Y.Microstructural characteristics in vacuum TLP (transient liquid phase) bonds using a novel iron-based interlayer based on duplex stainless steel base metal alloyed with a melting-point depressant[J]. Vacuum, 2014, 99: 12
[12] Wu M F, Kuang H J, Wang F J, et al.Partially transient liquid phase-diffusion bonding on Ti(C, N)-Al2O3 ceramic matrix composites using Zr/Cu/Zr as interlayer[J]. Acta Metall. Sin., 2014, 50: 619
[12] (吴铭方, 匡鸿锦, 王凤江等. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料[J]. 金属学报, 2014, 50: 619)
[13] Zhang X, Shi X H, Wang J, et al.Effect of bonding temperature on the microstructures and strengths of C/C composite/GH3044 alloy joints by partial transient liquid-phase (PTLP) bonding with multiple interlayers[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 663
[14] Peng F, Dong X H, Liu K, et al.Effects of strain rate and plastic work on martensitic transformation kinetics of austenitic stainless steel 304[J]. J. Iron Steel Res. Int., 2015, 22: 931
[15] Li X F, Ding W, Cao J, et al.In situ TEM observation on martensitic transformation during tensile deformation of SUS304 metastable austenitic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 302
[16] Liu H P, Liu B, Li D Z, et al.Microstructural characterization of welded joint in duplex stainless steel by laser continuous heat treatment[J]. J. Iron Steel Res. Int., 2014, 21: 710
[17] Abraham S T, Albert S K, Das C R, et al.Assessment of sensitization in AISI 304 stainless steel by nonlinear ultrasonic method[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 545
[18] Qi Z F.Diffusion and Phase Transition in Solid Metals [M]. Beijing: China Machine Press, 1998: 107
[18] (戚正风. 固态金属中的扩散与相变 [M]. 北京: 机械工业出版社, 1998: 107)
[19] Zhao Z Y.Alloy Steel Design [M]. Beijing: National Defense Industry Press, 1999: 250
[19] (赵振业. 合金钢设计 [M]. 北京: 国防工业出版社, 1999: 250)
[20] Cui Z Q.Metal and Heat Treatment [M]. Beijing: China Machine Press, 1993: 234
[20] (崔忠圻. 金属学与热处理 [M]. 北京: 机械工业出版社, 1993: 234)
[21] Dobrzański L A, Brytan Z, Grande M A, et al.Innovative PM duplex stainless steels obtained basing on the schaeffler diagram[J]. Arch. Mater. Sci. Eng., 2008, 30: 49
[22] Pacquentin W, Caron N, Oltra R.Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting[J]. Appl. Surf. Sci., 2015, 356: 561
[23] Gómez X, Echeberria J.Microstructure and mechanical properties of carbon steel A210-superalloy Sanicro 28 bimetallic tubes[J]. Mater. Sci. Eng., 2003, A348: 180
[24] Ghosh C, Paul A.Elucidation of bifurcation of the kirkendall marker plane in a single phase using physico-chemical approach[J]. Intermetallics, 2008, 16: 955
[25] Svoboda J, Fischer F D, Abart R.Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases[J]. Acta Mater., 2010, 58: 2905
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[8] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[9] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[10] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[11] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[12] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[13] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[14] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[15] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
No Suggested Reading articles found!