Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 385-396    DOI: 10.11900/0412.1961.2016.00261
Orginal Article Current Issue | Archive | Adv Search |
Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process
Qingdong ZHANG,Xiao LIN(),Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Qingdong ZHANG,Xiao LIN,Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process. Acta Metall Sin, 2017, 53(4): 385-396.

Download:  HTML  PDF(2658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Quenching is a key process in cold-rolled high strength steel manufacturing for the improvement of the material strength and plasticity. The quenching, however, may bring initial flatness defects of the steel strips, which causes problems for subsequent production process. It is thus necessary to study the flatness defects evolution during the quenching process. Using the secondary development of ABAQUS subroutine UMAT, this work establishes a temperature-microstructure-stress coupling finite element modeling (FEM) model to simulate the quenching process of the high strength steel with initial buckling defects. Thermal simulation experiments are further conducted to verify the present FEM model. Then, the elastic-plastic deformation behavior of the steel plates and its effects on flatness buckling during the quenching process is investigated using the FEM model. As a consequence, the buckling defect evolution mechanism in heat treatment process is obtained for the cold-rolled high strength steel. The flatness change or the forming of new flatness defect is mainly caused by the longitudinal extension arising from temperature gradient and the sequential phase transformation different in width and transverse directions. Change rates of the wave height, width, and length are used to describe the flatness change degree, quantifying the influence of the tension and initial transverse temperature difference on flatness change. The simulation shows that the tension has a positive correlation with the improvement of initial bucking defects. The initial edge waves become more severe after quenching along with the appearance of the new quarter waves, when the initial temperature of strip center is higher than that of the edge. On the contrary, the initial central waves become more serious when the initial temperature of strip center is lower. Meanwhile, joint impact of the tension and the initial transverse temperature difference on wave height is revealed for the application of industrial practice. Furthermore, quenching experiments of the high strength steel plates with initial single edge wave buckling defects are carried out using the experiment system in lab. Different sides of the plates quench into the water tank to reproduce the sequence of the phase change. The simulation and experiments produce consistent results qualitatively. This work makes connections between technological parameters and flatness change during quenching process, which can provide support to industrial heat treatment of high strength steel.

Key words:  high strength steel      quenching      buckling      edge wave      central wave      numerical simulation     
Received:  27 June 2016     
Fund: Supported by National Natural Science Foundation of China (No.51575040) and National Key Technologies Research & Development Program of China (No.2011BAE13B05)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00261     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/385

Fig.1  Transverse displacement versus temperature during quenching process of cold-rolled high strength steel strip under different tensions
Fig.2  Models of steel sheet with initial edge wave (a) and initial central wave (b)
Fig.3  Martensite volume fraction of steel strip during quenching process
Fig.4  Changes of edge wave height during quenching process
Fig.5  Differences of strains between edge region and central region of steel strip in stages I (a), II (b) and III (c)
Fig.6  Displacement in thickness direction of steel strip after quenching
Tension / MPa Wave height decrease / % Wave length increase / % Wave width decrease / %
5 8.58 1.10 0.40
10 15.15 1.06 0.80
15 21.29 1.03 1.20
20 28.86 1.01 1.63
25 31.97 0.97 2.00
30 36.64 0.94 2.40
Table 1  Influences of tension on change rate of edge wave after quenching
Fig.7  Displacement in thickness direction with an initial transverse temperature difference of 10 ℃
Fig.8  Distributions of new-formed quarter wave peak and valley displacements in thickness direction after quenching with an initial transverse temperature difference of 10 ℃
Fig.9  Displacement in thickness direction along longitudinal direction after quenching with an initial transverse temperature difference of 10 ℃
Fig.10  Change of strip longitudinal stress distribution over time
ΔT / ℃ Wave height decrease / % Wave length increase / % Wave width decrease / %
-20 48.86 1.15 2.50
-15 47.46 1.14 2.40
-10 32.07 1.12 1.88
-5 28.08 1.07 1.75
0 26.86 1.01 1.63
5 17.71 1.07 1.00
10 -1.75 1.12 0.13
15 -7.82 1.14 -0.13
20 -19.39 1.15 -1.25
Table 2  Influences of initial transverse temperature difference on change rate of edge wave after quenching
ΔT / ℃ Wave shape Wave height of quarter wave / mm Wave width of quarter wave / mm Wave length of quarter wave / mm
-20 Edge wave - - -
-15 Edge wave - - -
-10 Edge wave - - -
-5 Edge wave - - -
0 Edge wave - - -
5 Edge wave + quarter wave 0.11 90.36 494.51
10 Edge wave + quarter wave 0.25 164.82 494.40
15 Edge wave + quarter wave 0.41 233.33 494.33
20 Edge wave + quarter wave 0.53 308.54 494.25
Table 3  Influences of initial transverse temperature difference on new-formed quarter wave after quenching
Tension / MPa ΔT=0 ΔT= -10 ℃ ΔT = -20 ℃
10 15.15% 23.28% 41.32%
20 26.86% 32.07% 48.86%
30 36.64% 40.10% 55.53%
Table 4  Decreases of edge wave height in different quenching conditions
Tension / MPa Wave height decrease / % Wave length increase / % Wave width decrease / %
5 4.23 1.10 0.13
10 7.55 1.08 0.44
15 10.80 1.05 0.96
20 13.99 1.03 1.67
25 17.29 1.00 2.08
30 20.76 0.98 2.29
Table 5  Influences of tension on change rate of central wave after quenching
Fig.11  Influences of initial transverse temperature difference on central wave height (a), central wave length and width (b) after quenching
Fig.12  Displacement in thickness direction with an initial transverse temperature difference of -20 ℃
Fig.13  Displacements in thickness direction of the quarter buckle peak and valley along width direction (a) and displacement in thickness direction along longitudinal direction (b) (ΔT=-20 ℃)
ΔT
Wave height of quarter wave
mm
Wave width of quarter wave
mm
Wave length of quarter wave
mm
-20 0.08 151.28 494.35
-15 0.05 137.64 494.37
-10 0.03 127.81 494.43
-5 0.02 96.84 494.63
Table 6  Influences of initial transverse temperature difference on wave shape after quenching
Fig.14  Changes of strip longitudinal stress distribution over time
Tension / MPa ΔT=0 ΔT=10 ℃ ΔT=20 ℃
10 7.55% 1.43% 8.77%
20 13.99% 8.18% 15.57%
30 20.76% 12.88% 22.03%
Table 7  Change rates of central wave height in different conditions
Fig.15  Edge wave height (a), edge wave length (b) and edge wave width (c) of steel sheet with different quenching methods
[1] Kang Y L.Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron Steel, 2008, 43(6): 1
[1] (康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1)
[2] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[2] (戎咏华. 先进超高强度-高塑性Q-P-T钢 [J]. 金属学报, 2011, 47: 1483)
[3] Wang L J, Cai Q W, Yu W, et al.Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687
[3] (王立军, 蔡庆伍, 余伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46: 687)
[4] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[4] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[5] Jia X S, Zuo X W, Chen N L, et al.Microstructure and properties of Q235 steel treated by novel Q-P-T process[J]. Acta Metall. Sin., 2013, 49: 35
[5] (贾晓帅, 左训伟, 陈乃录等. 经新型Q-P-T工艺处理后Q235钢的组织与性能[J]. 金属学报, 2013, 49: 35)
[6] Ju B, Wu H B, Tang D, et al.Effect of microstructure evolution on mechanical properties of ultra-high strength wear resistance steel[J]. Acta Metall. Sin., 2014, 50: 1055
[6] (巨彪, 武会宾, 唐荻等. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50: 1055)
[7] Zhu D M, Liu G Y, Li L H, et al.Research of martensite transformation on technical parameters of non-restraint quenching[J]. Iron Steel, 2008, 43(1): 50
[7] (朱冬梅, 刘国勇, 李龙海等. 相变对无约束淬火控冷工艺参数的影响[J]. 钢铁, 2008, 43(1): 50)
[8] Qiao X, Yu F, Liu Y.Flatness control of thin plate in the process of quenching[J]. J. Iron Steel Res., 2011, 23(suppl.1): 159
[8] (乔馨, 于峰, 刘源. 薄规格钢板淬火过程中的板形控制[J]. 钢铁研究学报, 2011, 23(增刊1): 159)
[9] Wu Y L, Wang D C, Kong L.Analysis of transverse flatness distribution of steel plate during the quenching process[J]. Adv. Mater. Res., 2015, 1095: 689
[10] Liu G Y, Li M W, Zhang S J.Thermal numerical simulation and experiment in quenching process of medium and heavy plate[J]. J. Iron Steel Res., 2007, 19(8): 51
[10] (刘国勇, 李谋渭, 张少军. 中厚板淬火过程的热力学数值模拟及实验[J]. 钢铁研究学报, 2007, 19(8): 51)
[11] Kaseda Y, Masui T.Control of buckling and crossbow in strip processing lines[J]. Iron Steel Eng., 1994, 71: 14
[12] Zhang Q D, Chang T Z, Dai J B, et al.Finite element simulation of the transverse distribution of tensile stress in the strip during continuous annealing process[J]. J. Univ. Sci. Technol. Beijing, 2006, 28: 1162
[12] (张清东, 常铁柱, 戴江波等. 连退线上带钢张应力横向分布的有限元仿真[J]. 北京科技大学学报, 2006, 28: 1162
[13] Zhang Q D, Chang T Z, Dai J B.Theory and experiment of the strip transverse buckling under high temperature[J]. Chin. J. Mech. Eng., 2008, 44(8): 219
[13] (张清东, 常铁柱, 戴江波. 带钢高温态横向瓢曲的理论与试验[J]. 机械工程学报, 2008, 44(8): 219)
[14] Zhang Q D, Liu Z Z, Zhou X M, et al.Research on strip profile buckling deformation during continuous annealing process[J]. Shanghai Met., 2005, 27(4): 27
[14] (张清东, 刘赞赞, 周晓敏等. 带钢在连续退火过程中的板形屈曲变形原因分析[J]. 上海金属, 2005, 27(4): 27)
[15] Lu X F.Study on buckling and warping deformation of steel strip [D]. Beijing: University of Science and Technology Beijing, 2015
[15] (卢兴福. 钢板带板形瓢曲与翘曲变形行为研究 [D]. 北京: 北京科技大学, 2015)
[16] Dai J B, Zhang Q D, Chen X L, et al.Large thermo-deflection of steel strip being processed in continuous anneal furnace[J]. Chin. J. Mech. Eng., 2003, 39(12): 71
[16] (戴江波, 张清东, 陈先霖等. 连续退火炉内带钢的热态大挠度变形分析[J]. 机械工程学报, 2003, 39(12): 71)
[17] Dai J T, Zhang Q D.Analysis and experiment on central buckling and post buckling of thin cold-rolled sheet[J]. Chin. J. Mech. Eng., 2011, 47(2): 44
[17] (戴杰涛, 张清东. 冷轧薄板中浪板形缺陷的屈曲及后屈曲理论与轧制试验研究[J]. 机械工程学报, 2011, 47(2): 44)
[18] Dai J T, Zhang Q D, Qin J.Analysis of local buckling for thin cold-rolled strip[J]. Eng. Mech., 2011, 28(10): 236
[18] (戴杰涛, 张清东, 秦剑. 薄宽冷轧带钢局部板形屈曲行为解析研究[J]. 工程力学, 2011, 28(10): 236)
[19] Lequesne C, Pensis O, Renard M, et al.Roller pressure quench process of steel plate modelling [A]. Proceedings of the 14th International Conference on Material Forming, ESAFORM 2011[C]. Melville: American Institute of Physics, 2011: 115
[20] Liu Z, Wu Z J, Wu J Z.Numerical Simulation of Heat Treatment Processing [M]. Beijing: Science Press, 1996: 1
[20] (刘庄, 吴肇基, 吴景之. 热处理过程的数值模拟. 北京: 科学出版社, 1996: 1)
[21] De Oliveira W P, Savi M A, Pacheco P M C L. Finite element method applied to the quenching of steel cylinders using a multi-phase constitutive model[J]. Arch. Appl. Mech., 2013, 83: 1013
[22] Zhou Z F, Wang X Y, Gu J F.Numerical simulation of eccentric cylinder quenching process[J]. J. Mech. Eng., 2011, 47(12): 62
[22] (周志方, 王晓燕, 顾剑锋. 偏心圆环淬火过程的数值模拟[J]. 机械工程学报, 2011, 47(12): 62)
[23] Song G S, Liu X H, Wang G D, et al.Numeric simulation on the effect of phase transformation on quenching stress of 22CrMo steel[J]. J. Plast. Eng., 2006, 13(2): 75
[23] (宋广胜, 刘相华, 王国栋等. 相变对22CrMo钢淬火应力影响的数值模拟[J]. 塑性工程学报, 2006, 13(2): 75)
[24] He L F, Li H P, Zhao G Q.FEM simulation of temperature, phase-transformation and stress/strain in quenching process[J]. Trans. Mater. Heat Treat., 2011, 32(1): 128
[24] (贺连芳, 李辉平, 赵国群. 淬火过程中温度、组织及应力/应变的有限元模拟[J]. 材料热处理学报, 2011, 32(1): 128)
[25] Zhang Q D, Cao Q, Zhang X F.A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures[J]. J. Mater. Eng. Perform., 2014, 23: 4336
[26] Sun C Y, Zeng P, Zhao S X, et al.Distortion prediction of larger-size plate for armour steel during quenching[J]. Heat Treat. Met., 2008, 33(8): 73
[26] (孙朝阳, 曾攀, 赵书行等. 装甲防护厚板淬火过程形状畸变的预测[J]. 金属热处理, 2008, 33(8): 73)
[27] Wang C, Wang Z D, Yuan G, et al.Heat transfer during quenching by plate roller quenching machine[J]. J. Iron Steel Res. Int., 2013, 20(5): 1
[28] Cheng H M, Wang H G, Chen T L.Solution of heat conduction inverse problem for steel 45 during quenching[J]. Acta Metall. Sin., 1997, 33: 467
[28] (程赫明, 王洪纲, 陈铁力. 45钢淬火过程中热传导方程逆问题求解[J]. 金属学报, 1997, 33: 467)
[29] Cheng B S, Xiao N M, Li D Z, et al.Sensitivity analysis of the effect of interfacial heat transfer coefficient on distortion simulation during quenching[J]. Acta Metall. Sin., 2012, 48: 696
[29] (程柏松, 肖纳敏, 李殿中等. 界面换热系数对淬火过程变形模拟影响的敏感性分析[J]. 金属学报, 2012, 48: 696)
[30] Wang X H, Li Y Y, Wang Y, et al.Control of asymmetric higher order flattness in cold rolling mill[J]. Steel Roll., 2008, 25(3): 25
[30] (王训宏, 李有元, 王勇等. 冷轧机组不对称高次浪形的控制[J]. 轧钢, 2008, 25(3): 25)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[6] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[10] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[15] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
No Suggested Reading articles found!