Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2016.00048
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS
Feng WANG(),Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Feng WANG,Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU. MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS. Acta Metall Sin, 2016, 52(9): 1115-1122.

Download:  HTML  PDF(1343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the lightest metallic structural material, magnesium alloys were widely used in automotive, aerospace, electronic equipment and other fields. Among commercial magnesium alloys, AM series were commonly used due to excellent ductility and energy absorption. However, their relatively poor strength greatly restricted their extended use. In order to improve mechanical properties of AM50 alloy, the Zn and Y elements were added into the AM50 alloy in the form of atomic ratio of 6∶1 by the permanent mold casting. The microstructure, solidification behavior and mechanical properties of AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, mass fraction, %) alloys were investigated by OM, SEM, EDS, XRD, thermal analysis and tensile tests. The results indicated that addition of Zn and Y elements with an atomic ratio of 6∶1 to AM50 alloy, the microstructures were obviously refined, and the quasicrystal I-phase(Mg3Zn6Y) cannot form. In addition, the granular Al6YMn6 phase and fine Al2Y phase were formed in the microstructure, and the size of Al6YMn6 phase increased with increasing the Zn and Y content. The Φ-Mg21(Zn, Al)17 phase with lamellar structure was formed around β phase when x≥3, and its amount increased with increasing the Zn and Y addition. Thermal analysis results show that the Φ-Mg21(Zn, Al)17 phase was formed at 354 ℃ by the peritectic reaction, in which the precipitation temperatures of α-Mg and β phase were decreased with the increase of x content. Due to the formation of Al6YMn6, Al2Y and Φ-Mg21(Zn, Al)17 phases, the size and amount of the β phase was decreased. For AM50-4(Zn, Y) alloy, the microstructure was greatly refined, and the ultimate tensile strength, yield strength and elongation of the alloy reached to the maximum, 206.63 MPa, 92.50 MPa and 10.04%, respectively.

Key words:  magnesium alloy      AM50      microstructure      thermal analysis      mechanical property     
Received:  29 January 2016     
Fund: Supported by National Natural Science Foundation of China (No.51504153), Natural Science Foundation of Liaoning Province (No.201602548) and Program for Liaoning Innovative Research Team in University (No.LT2013004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00048     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1115

Alloy Al Mn Zn Y Mg
AM50-0(Zn, Y) 5.05 0.28 0.18 - Bal.
AM50-2(Zn, Y) 5.09 0.27 1.71 0.32 Bal.
AM50-3(Zn, Y) 4.95 0.26 2.53 0.52 Bal.
AM50-4(Zn, Y) 4.98 0.28 3.36 0.73 Bal.
AM50-5(Zn, Y) 4.92 0.29 4.23 0.90 Bal.
Table1  Chemical compositions of the alloys (mass fraction / %)
Fig.1  Microstructures of as-cast AM50-x(Zn, Y) alloys
(a) x=0 (b) x=2 (c) x=3 (d) x=4 (e) x=5
Fig.2  SEM images (a~e) and XRD spectra (f) of as-cast AM50-x(Zn, Y) alloys with x=0 (a), x=2 (b), x=3 (c), x=4 (d) and x=5 (e)
Fig.3  SEM image of as-cast AM50 alloy (a), and EDS analyses of β-Mg17Al12 (b) and Al8Mn5 (c)
Fig.4  SEM images of as-cast AM50-4(Zn, Y) alloy (a, b), and EDS analyses of β-Mg17(Zn, Al)12 (c), Φ-Mg21(Zn, Al)17 (d) and Al6YMn6 (e)
Fig.5  SEM image of as-cast AM50-4(Zn, Y) alloy (a), and area scan maps of elements Mg (b), Al (c), Zn (d), Y (e) and Mn (f)
Fig.6  Thermal analysis results of as-cast AM50-x(Zn, Y) alloys (T—temperature, t—time)
(a) x=0 (b) x=2 (c) x=3 (d) x=4 (e) x=5
Fig.2  Critical temperatures obtained from the thermal analysis curves (Fig.6)
Fig.7  Tensile properties of as-cast AM50-x(Zn, Y) alloys at room temperature (σb—ultimate tensile strength, σ0.2—yield strength, δ—Elongation)
[1] Agnew S R, Nie J F.Scr Mater, 2010; 63: 671
[2] Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P.JOM, 2008; 60(11): 57
[3] Fechner D, Hort N, Blawert C, Dieringa H, St?rmer M, Kainer K U. J Mater Sci, 2012; 47: 5461
[4] Kondori B, Mahmudi R.Mater Sci Eng, 2010; A527: 2014
[5] ünal M.Int J Cast Met Res, 2014; 27(2): 80
[6] Wang Q D, Lin J B, Liu M P, Ding W J.Int J Mater Res, 2008; 99: 761
[7] Wang J L, Yang J, Wu Y M, Zhang H J, Wang L M.Mater Sci Eng, 2008; A472: 332
[8] Singh L K, Srinivasan A, Pillai U T S, Joseph M A, Pai B C.Trans Ind Inst Met, 2015; 68: 331
[9] Kim J M, Park B K, Jun J H, Shin K, Kim K T, Jung W J. Mater Sci Eng, 2007; A449-451: 326
[10] Zhang J S, Pei L X, Du H W, Liang W, Xu C X, Lu B F.J Alloys Compd, 2008; 453: 309
[11] Bae D H, Lee M H, Kim K T, Kim W T, Kim D H.J Alloys Compd, 2002; 342: 445
[12] Zhang J S, Zhang Y Q, Zhang Y, Xu C X, Wang X M, Yan J.Trans Nonferrous Met Soc China, 2010; 20: 1199
[13] Teng X Y, Liu T, Zhou G R, Liu L Y. Adv Mater Res, 2011; 306-307: 582
[14] Wang X D, Du W B, Wang Z H, Liu K, Li S B.Mater Sci Eng, 2011; A530: 446
[15] Wang R M, Eliezer A, Gutman E M.Mater Sci Eng, 2003; A355: 201
[16] Zhang Z, Couture A, Luo A.Scr Mater, 1998; 39: 45
[17] Ohno M, Mirkovic D, Schmid-Fetzer R.Mater Sci Eng, 2006; A421: 328
[18] Wang J L, Peng Q M, Wu Y M, Wang L M.Trans Nonferrous Met Soc China, 2006; 16(s1): 703
[19] Zheng W C, Li S S, Tang B, Zeng D B.Acta Metall Sin, 2006; 42: 835
[19] (郑伟超, 李双寿, 汤彬, 曾大本. 金属学报, 2006; 42: 835)
[20] Pettersen G, Westengen H, H?ier R, Lohne O.Mater Sci Eng, 1996; A207: 115
[21] Wu G H, Fan Y, Zhai C Q, Ding W J.Acta Metall Sin, 2008; 44: 1247
[21] (吴国华, 樊昱, 翟春泉, 丁文江. 金属学报, 2008; 44: 1247)
[22] Wang J, Zhu X R, Xu Y D, Wang R, Nie J J, Zhang L J.Chin J Nonferrous Met, 2014; 24: 25
[22] (王军, 朱秀荣, 徐永东, 王荣, 聂景江, 张立君. 中国有色金属学报, 2014; 24: 25)
[23] Ohno M, Mirkovic D, Schmid-Fetzer R.Acta Mater, 2006; 54: 3883
[24] Wang Y S, Wang Q D, Ma C J, Ding W J, Zhu Y P.Mater Sci Eng, 2003; A342: 178
[25] Lü Y Z, Wang Q D, Ding W J, Zeng X Q, Zhu Y P.Mater Lett, 2000; 44(5): 265
[26] Maxwell I, Hellawell A.Acta Metall, 1975; 23: 229
[27] Becerra A, Pekguleryuz M.J Mater Res, 2009; 24: 1722
[28] Hou D H, Liang S M, Chen R S, Dong C.Acta Metall Sin, 2014; 50: 601
[28] (侯丹辉, 梁松茂, 陈荣石, 董闯. 金属学报, 2014; 50: 601)
[29] Zhao Z D, Chen Q, Wang Y B, Shu D Y. Mater Sci Eng, 2009; A515: 152
[30] Yuan W, Panigrahi S K, Su J Q, Mishra R S.Scr Mater, 2011; 65: 994
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!