Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 851-858    DOI: 10.11900/0412.1961.2015.00600
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY
Siqian ZHANG1,Dong WANG2(),Di WANG2,Jianqiang PENG3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
3 Harbin Turbine Co. Ltd., Harbin 150046, China.
Cite this article: 

Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY. Acta Metall Sin, 2016, 52(7): 851-858.

Download:  HTML  PDF(1805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Up to now, considerable effort has been expended in attempts to investigate the influences of Re on Ni-based single crystal superalloys. However, few study had elucidated the influences of Re on carbide, boride and grain boundary. Therefore, the influence of a 2%Re (mass fraction) addition on the as-cast and heat-treated microstructures of a Ni-based directionally solidified superalloy was investigated by comparison with Re-free alloy using SEM, EPMA and TEM. The results show that Re accelerates the precipitation of μ phase in the periphery of eutectic and at grain boundary for as-cast microstructure. After heat treatment, Re also accelerates the precipitation of phase in the vicinity of primary MC carbide and at grain boundary. For 0Re alloy, there are small number of M6C carbide in the vicinity of primary MC carbide and M23(C, B)6 boro-carbide at grain boundary. For 2Re alloy, a large amount of blocky μ phase enveloped by thick γ′-film is found in the vicinity of primary MC carbide and at grain boundary. Enrichment of B along the grain boundary is observed in 0Re alloy. On the contrary, relatively uniform distribution of B is found in 2Re alloy. The precipitation mechanism of μ phase during the process of heat treatment is also analyzed.

Key words:  Ni-based superalloy      directional solidification      Re      μ phase      grain boundary      carbide     
Received:  19 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51101160 and 51501117), National Key Foundation for Exploring Scientific Instrument (No.2012YQ22023304) and Liaoning Provincial Department of Education Project (No.L2014050)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00600     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/851

Alloy Re Cr Co Mo W Al Ti Nb Ta C B Ni
0Re 0 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
2Re 2 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
Table 1  Nominal compositions of 0Re and 2Re columnar grain superalloys
Fig.1  Precipitates at periphery region of eutectic(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy (c) TEM image and corresponding SAED pattern (inset) of 0Re alloy (d) TEM image and corresponding SAED patterns (insets) of 2Re alloy
Fig.2  Microstructures of grain boundary (GB) in as-cast alloy(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy (c) TEM image of 0Re alloy (d) TEM image and corresponding SAED pattern (inset) of 2Re alloy
Fig.3  Microstructures of interdendritic region(a) SEM image of as-cast 0Re alloy (b) SEM image of as-cast 2Re alloy (c) SEM image of heat-treated 0Re alloy (d) SEM image of heat-treated 2Re alloy(e) TEM image and corresponding SAED pattern (inset) of heat-treated 0Re alloy(f) TEM image and corresponding SAED pattern (inset) of heat-treated 2Re alloy
Fig.4  Microstructures of heat-treated GBs(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy(c) TEM image and corresponding SAED pattern (inset) of 0Re alloy(d) TEM image and corresponding SAED pattern (inset) of 2Re alloy
Fig.5  EPMA maps of B in 0Re (a) and 2Re (b) alloys after heat treatment (Insets show that SEM images at GBs of 0Re and 2Re alloys, and arrows show the location of GB)
Table 2  Chemical compositions of phases in 0Re and 2Re alloys by EPMA
Fig.6  SEM images of interdendritic region near the blocky MC carbide of 2Re alloy aging at 1110 ℃ for different times after solution treatment (a) 0 min (b) 5 min (c) 10 min (d) 20 min
Fig.7  SEM images of grain boundary region of 2Re alloy aging at 1110 ℃ for different times after solution treatment (a) 0 min (b) 5 min (c) 10 min (d) 20 min
Fig.8  Formation of the stacking fault in the vicinity of the MC carbide of 2Re alloy after solution treatment
[1] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 35
[2] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G.J Mater Eng Perform, 1993; 2: 481
[3] Ross E W, O'Hara K S. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 257
[4] Cetel A D, Duhl D N.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 287
[5] Bürgel R, Grossmann J, Lüseberink O, Mughrabi H, Pyczak F, Singer R F, Volek A.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 25
[6] Harris K, Erickson G L, Schwer R E.In: Gell M, Kortovich C S, Bricknell R H, Kent W B, Radovich J F eds., Superalloys 1984, Warrendale, PA: The Minerals, Materials and Metals Society, 1984: 221
[7] Harris K, Erickon G L, Sikkenga S L, Kubarych K G.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 297
[8] Chen R Z. J Aero Mater, 1993; (1): 47
[8] (陈荣章. 航空材料学报, 1993; (1): 47)
[9] Blavette D, Caron P, Khan T.Scr Mater, 1986; 20: 1395
[10] Warren P J, Cerezo A, Smith G D W.Mater Sci Eng, 1998; A250: 88
[11] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C.Acta Mater, 2010; 58: 931
[12] Wanderka N, Glatzel U.Mater Sci Eng, 1995; A203: 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D, R?sler J.Scr Mater, 2002; 46: 235
[14] Epishin A, Bruckner U, Portella P D, Link T.Scr Mater, 2003; 48: 455
[15] Fu C L, Reed R, Janotti A, Krcmar M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 867
[16] Luo Y S, Li J R, Liu S Z, Sun F L, Han X M, Cao C X.Chin J Nonferrous Met, 2005; 15: 1655
[16] (骆宇时, 李嘉荣, 刘世忠, 孙凤礼, 韩秀梅, 曹春晓. 中国有色金属学报, 2005; 15: 1655)
[17] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F.Mater Sci Eng, 2014; A603: 84
[18] Zhang Y D, Yang Z G, Zhang C, Lan H.Chin J Aero, 2010; 23: 370
[19] Wang M G, Tian S G, Yu H C, Yu X F, Qian B J.J Aero Mater, 2009; 29(4): 98
[19] (王明罡, 田素贵, 于慧臣, 于兴福, 钱本江. 航空材料学报, 2009; 29(4): 98)
[20] Li J R, Tang D Z, Chen R Z.J Mater Eng, 1997; (8): 3
[20] (李嘉荣, 唐定中, 陈荣章. 材料工程, 1997; (8): 3)
[21] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer S, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, PA: The Minerals, Materials and Metals Society, 1988: 255
[22] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 9
[23] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 27
[24] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 125
[25] Kong Y H, Chen Q Z.Mater Sci Eng, 2004; A366: 135
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[10] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[13] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!