Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1153-1162    DOI: 10.11900/0412.1961.2015.00429
Current Issue | Archive | Adv Search |
RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Tao JIN(),Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Tao JIN,Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall Sin, 2015, 51(10): 1153-1162.

Download:  HTML  PDF(3697KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal superalloys have been widely used to produce turbine blades for advanced aero-engines because of the super temperature-related microstructural stability and comprehensive mechanical properties. However, due to effects of the high temperature and complicated stresses in service, the microstructures of superalloys might gradually evolve and fail in different modes. The present paper reviews the progress of microstructural stability and mechanical behavior including the γ’ phase rafting, TCP phase precipitation, high temperature creep, low cycle fatigue and thermomechanical fatigue of single crystal superalloys. The addition of Ru improves the creep life of superalloys, but also indirectly promotes the occurrence of “topological inversion”. On the other hand, with the increase of aging temperature and time, the contents of refractory elements in m phase rise significantly. With the increase of applied tension stress, more m phase precipitate from the γ matrix, whereas inverse tendency is shown under compression stress. Numerous planar defects are formed during precipitation of m phase, and these defects promote the nucleation of P and R phases. During high temperature and low stress creep, an important dislocation a<010> superdislocation is observed, which moves in the γ’ phase slowly by a combination of slide and climb. Under very high temperature, incubation with accelerating creep rate occurs before the primary stage, which relates to the extending process of the γ width. At last, the stacking fault energy is significantly reduced after Ru additions, and thus a series of complex deformation mechanisms occur during low cycle fatigue, e.g. stacking faults penetrating γ/γ’ interface, trailing a/6<112> Shockley dislocations shearing into the γ’ phase. During thermomechanical fatigue, the life of superalloys is influenced by the site of crack initiation, microstructural evolution and oxidation resistance.

Key words:  Ni-based single crystal superalloy      microstructural stability      mechanical behavior     
Fund: Supported by High Technology Research and Development Program of China (No.2014AA-041701) and National Natural Science Foundation of China (Nos.51331005 and 11332010)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00429     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1153

Fig.1  Evolution of the high-temperature capability of the superalloys[1]
Fig.2  SEM[10] (a) and TEM[11] (b) microstructural configurations of typical Ni-based superalloy after heat treatment (Misfit dislocations present in γ / γ’ interface as marked by arows in Fig.2b)
TCP phase System Space Atom per Coordination polyhedra Lattice
group cell CN12 CN14 CN15 CN16 parameter
nm
s Tetragonal P42/mnm 30 10 16 4 0 a=0.912
c=0.472
m Rhombohedral R-3m 13 7 2 2 2 a=0.476
c=2.583
P Orthorhombic Pnma 56 24 20 8 4 a=1.689
b=0.475
c=0.907
R Rhombohedral R-3 53 27 12 6 8 a=1.093
c=1.934
Table 1  Crystallography of s, m, P and R phases[18,19]
Fig.3  TEM image of a TCP precipitate in a high Re single crystal superalloy with 3%Ru addition after thermal aging at 1100 ℃ for 1000 h (a) and its SAED pattern (b), TEM image of a TCP precipitate in a high Re single crystal superalloy without Ru after creep rupture at 1100 ℃ and 150 MPa (c) and its SAED pattern (d)[26]
Fig.4  TEM images showing intergrowth of m and P phases and corresponding SAED pattern (insets) (a) and intergrowth of m and R phases and corresponding SAED pattern (insets) (b)[26]
Fig.5  Two-beam bright-field TEM image showing microstructure configurations of a Ni-based single crystal superalloy containing 3%Ru after low cycle fatigue failure at 900 ℃ (Det=1.6%, image was taken close to the [001] zone axis)[44]
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 19
[2] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[3] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31(12): 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31(12): 1)
[4] Darolia R, Lahrman D F, Field R D, Sisson R. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1988, Champion, PA: TMS, 1988: 255
[5] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Philos Mag Lett, 2012; 92: 556
[6] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Yoo Y S, Jo C Y. Metall Mater Trans, 2012; 43A: 3608
[7] Tan X P, Hong H U, Choi B G, Kim I S, Jo C Y, Jin T, Hu Z Q. J Mater Sci, 2013; 48: 1085
[8] Argence D, Vernault C, Desvallées Y, Fournier D. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 829
[9] Zhang J X, Koizumi Y, Kobayashi T, Murakumo T, Harada H. Metall Mater Trans, 2004; 35A: 1911
[10] Wang X G, Liu J L, Jin T, Sun X F. Mater Sci Eng, 2014; A598: 154
[11] Wang X G, Liu J L, Jin T, Sun X F, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Des, 2015; 67: 543
[12] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[13] Mughrabi H. Mater Sci Technol, 2009; 25: 191
[14] Pollock T M, Argon A S. Acta Metall, 1994; 42: 1859
[15] Wang X G. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2015 (王新广. 中国科学院金属研究所博士学位论文, 沈阳, 2015)
[16] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2013; A580: 21
[17] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Adv Eng Mater, 2015; 17: 1034
[18] Rae C M F, Reed R C. Acta Mater, 2001; 49: 4113
[19] Seiser B, Drautz R, Pettifor D G. Acta Mater, 2011; 59: 749
[20] Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[21] Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans, 2008; 39A: 1014
[22] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion, PA: TMS, 2004: 787
[23] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[24] Gao S, Zhou Y Z, Li C F, Cui J P, Liu Z Q, Jin T. J Alloys Compd, 2014; 610: 589
[25] Cheng K Y. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (成魁宇. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[26] Tan X P. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (谭喜鹏. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[27] Luo Y P. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2014 (罗银屏. 中国科学院金属研究所硕士学位论文, 沈阳, 2014)
[28] Chen J Y, Feng Q, Sun Z Q. Scr Mater, 2010; 63: 795
[29] Pollock T M, Argon A S. Acta Metall, 1992; 40: 1
[30] Field R D, Pollock T M, Murphy W H. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 557
[31] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Metall Mater Trans, 2002; 33A: 3741
[32] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L, Zhu J. Acta Mater, 2014; 76: 294
[33] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[34] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2015; A626: 406
[35] Eggeler G, Dlouhy A. Acta Mater, 1997; 45: 4251
[36] Srinivasan R, Eggeler G F, Mills M J. Acta Mater, 2000; 48: 4867
[37] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073
[38] Reed R C, Cox D C, Rae C M F. Mater Sci Eng, 2007; A448: 88
[39] le Graverend J B, Cormier J, Jouiad M, Gallerneau F, Paulmier P, Hanmon F. Mater Sci Eng, 2010; A527: 5295
[40] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 737
[41] Li Q Q. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (李芹芹. 中国科学院金属研究所硕士学位论文, 沈阳, 2012)
[42] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F. Int J Fatigue, 2014; 63: 137
[43] Auerswald J, Mukherji D, Chen W, Wahi R P. Z Metallkd, 1997; 88: 652
[44] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Scr Mater, 2015; 99: 57
[45] Zhang X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 炫. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[46] Gabb T P, Welsch G E. Scr Metall, 1986; 20: 1049
[47] Gabb T P, Welsch G E. Acta Metall, 1989; 37: 2507
[48] Milligan W W, Jayaraman N. Mater Sci Eng, 1986; 82: 127
[49] Zhou H, Ro Y, Harada H, Aoki Y, Arai M. Mater Sci Eng, 2004; A381: 20
[50] Han G M. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (韩国明. 中国科学院金属研究所硕士学位论文, 沈阳, 2010)
[51] Kraft S, Zauter R, Mughrabi H. Fatigue Fract Eng Mater Struct, 1993; 16: 237
[52] Liu F, Wang Z G, Ai S H, Wang Y C, Sun X F, Jin T, Guan H R. Scr Mater, 2003; 48: 1265
[53] Zhang J X, Harada H, Ro Y, Koizumi Y, Kobayashi T. Acta Mater, 2008; 56: 2975
[54] Moverare J J, Johansson S, Reed R R. Acta Mater, 2009; 57: 2266
[55] Zhang J. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 剑. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[56] Xu Y B. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013 (徐砚博. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[4] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[5] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[6] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[7] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[8] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[9] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[10] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[11] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[12] Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 956-964.
[13] Sheng PU,Guang XIE,Li WANG,Zhiyi PAN,Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(5): 538-548.
[14] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[15] PU Sheng, XIE Guang, ZHENG Wei, WANG Dong, LU Yuzhang, LOU Langhong, FENG Qiang. EFFECT OF W AND Re ON DEFORMATION AND RECRYSTALLIZATION OF SOLUTION HEAT TREATED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(2): 239-248.
No Suggested Reading articles found!