Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (1): 33-40    DOI: 10.11900/0412.1961.2015.00257
Current Issue | Archive | Adv Search |
RESEARCH ON RIDGING OF 17%Cr ULTRA PURE FERRITIC STAINLESS STEEL AFTER ENLONGATED ALONG VARIOUS DIRECTIONS
Zhi FANG1,Jingyuan LI1(),Yulai CHEN2,Laizhu JIANG3,Wei DU3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
3 Baosteel Research Institute, Baoshan Iron and Steel Co. Ltd., Shanghai 200431, China
Cite this article: 

Zhi FANG,Jingyuan LI,Yulai CHEN,Laizhu JIANG,Wei DU. RESEARCH ON RIDGING OF 17%Cr ULTRA PURE FERRITIC STAINLESS STEEL AFTER ENLONGATED ALONG VARIOUS DIRECTIONS. Acta Metall Sin, 2016, 52(1): 33-40.

Download:  HTML  PDF(9316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Improved mechanical and chemistry properties of ferritic stainless steel (FSS), such as stamping formability and corrosion resistance, have been attained by decreasing the contents of C and N. Therefore, the ultra pure ferritic stainless steel with low content of C and N is a good candidate to replace the conventional Cr-Ni austenitic stainless steel for specific applications to save the higher price of Ni. As compared to conventional austenitic stainless steel, however, the ferritic stainless steel is susceptible to develop narrow ridges on the sheet surface during forming operations. The ridges, which can extend over the whole sheet length and have a depth of 20~50 μm, destroy the smooth appearance and surface shine of the product and thereby reduce the quality of the formed work pieces. This is one of the most serious problems of ferritic stainless steel sheets. Hence, the improvement for resistance of ridging is desired for further wide applications of ferritic stainless steel. In this work, laser scanning confocal microscopy, XRD and EBSD were used to observe the corelation between surface ridging and the evolution of grain orientation of 17%Cr ultra pure ferritic stainless steel after elongated along three different directions. Furthermore, the mechanism of tensile ridging of ferritic stainless steel was discussed. The results show that the ridging direction always parallels to the original rolling direction when the 17%Cr ultra pure ferritic stainless steel is enlongated along 0° (rolling direction, RD), 45° and 90° (transverse direction, TD) with the rolling directions, respectively. However, the height of ridging gradually decreases with the increase of the angle betweeen the rolling direction. Meanwhile, tensile texture of <110>//TA (tensile axis) gradually forms after enlongated along three different directions. The most important phenomenon is that the crystal plane almost does not rotate when enlongated along TD, while {112} and {221} orientations form when enlongated along RD. Thus it can be deduced that there is no relationship between ridging and <110>//TA orientation in 17%Cr ultra pure ferritic stainless steel. Moreover, the rotation of crystal direction in rolling plane has little effect on the ridging. However, the formation of ridging can be attributed to the rotation of crystal plane in rolling plane with cluster distribution.

Key words:  ultra pure ferritic stainless steel      crystal rotation      ridging      texture     
Received:  12 May 2015     
Fund: Supported by National Natural Science Foundation of China (No.51174026) and National Science and Technology Pillar Program (No.2012BAE04B02)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00257     OR     https://www.ams.org.cn/EN/Y2016/V52/I1/33

Fig.1  Schematic of surface ridging (a), surface morphologies at low (b) and high (c) magnification of 17%Cr ultra pure ferritic stainless steel after elongated along 0° (RD), 45° and 90° (TD) (RD—rolling direction, TD—transverse direction)
Fig.2  Surface profiles of 17%Cr ultra pure ferritic stainless steel after elongated 25% along RD (a), 45° (b) and TD (c)
Direction Ridging / mm Ra / mm Rt / mm
Peak Valley
RD 23.01 -15.53 6.82 38.54
45° 7.58 -5.27 2.44 12.85
TD 4.28 -4.77 1.20 9.05
Table 1  Ridging parameters of 17%Cr ultra pure ferritic stainless steel after elongated 25% along 3 directions
Fig.3  Orientation distribution function (ODF) figures of 17%Cr ultra pure ferritic stainless steel at annealing state (a) and elongated 25% along RD (b) and TD (c) (F, j1—Eular angle)
Fig.4  Distribution of grains with &lt;110&gt;//RD (a) and &lt;110&gt;//TD (b) at annealing state, &lt;110&gt;//RD (c) and &lt;110&gt;//TD (d) after elongation 25% along RD and TD
Fig.5  ND-IPF (a, c, e) and RD-IPF (b, d, f) of grain orientation in 17%Cr ultra pure ferritic stainless steel at annealing state (a, b), elongated 25% along RD (c, d) and TD (e, f)
Fig.6  Schematic of relationship between ridging and rotation of crystal orientation and crystal plane
  
[1] Defilippi J D, Chao H C. Metall Mater Trans, 1971; 2B: 3209
[2] Chao H C. Trans ASM, 1967; 60: 37
[3] Wright R N. Metall Trans, 1972; 3: 83
[4] Bethke K, Lücke K, H?lscher M. Mater Sci Forum, 1994; 157: 1137
[5] Brochu M, Yokota T, Satoh S. ISIJ Int, 1997; 9: 872
[6] Shin H J, An J K, Park S H, Lee D N. Acta Mater, 2003; 51: 4693
[7] Takechi H, Kato H, Sunamit T, Nakayama T. Trans Jpn Inst Met, 1967; 8: 233
[8] Wu P D, Lloyd D J, Huang Y. Mater Sci Eng, 2006; A427: 241
[9] Engler O, Huh M Y, Tome C N. Metall Mater Trans, 2005; 36A: 3127
[10] Wu P D, Jin H, Shi Y, Lloyd D J. Mater Sci Eng, 2006; A423: 300
[11] Sinclair C W. Metall Mater Trans, 2007; 38A: 2435
[12] Lefebvre G, Sinclair C W, Lebensohn R A, Mithieux J D. Modell Simul Mater Sci Eng, 2012; 20: 024008
[13] Knutsen R D, Wittridge N J. Mater Sci Technol, 2002; 18: 1279
[14] Gao F, Liu Z Y, Zhang W N, Liu H T, Sun G T, Wang G D. Acta Metall Sin, 2012; 10: 1166
[14] (高 飞, 刘振宇, 张维娜, 刘海涛, 孙广庭, 王国栋. 金属学报, 2012; 10: 1166)
[15] Fang X Y, Wang W G, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404
[15] (方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2010; 46: 404)
[16] Cui G B, Ju X H, Ren D D, Jia H P, Wang Z Y. J Chin Electron Microsc Soc, 2013; 32: 224
[16] (崔桂彬, 鞠新华, 任丹丹, 贾惠平, 王泽阳. 电子显微学报, 2013; 32: 224)
[17] Balke P, De-Hosson J Th M. Scr Mater, 2001; 44: 461
[18] Allain-Bonasso N, Wagner F, Berbenni S, Field D P. Mater Sci Eng, 2012; A548: 56
[19] Yazawa Y, Muraki M, Kato Y, Furukimi O. ISIJ Int, 2003; 43: 1647
[20] Shan Y T, Luo X H, Hu X Q, Liu S. J Mater Sci Technol, 2011; 27: 352
[21] Liu J, Luo X H, Hu X Q, Liu S. Acta Metall Sin, 2011; 47: 688
[21] (刘 静, 罗兴宏, 胡小强, 刘 实. 金属学报, 2011; 47: 688)
[22] Hamada J, Matsumoto Y, Fudanoki F, Maeda S. ISIJ Int, 2003; 12: 1989
[23] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1992; 12: 1319
[24] Hub M Y, Lee J H, Park S H, Engler O, Raabe D. Steel Res Int,2005; 76: 797
[25] Jung I, Chae D, De-Cooman B C. Steel Res Int, 2010; 12: 1089
[26] Singh C D. Textures Microstr, 1996; 27: 445
[27] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100
[28] Schouwenaars R, Houtte P V, Aernoudt E, Standaert C, Dilewijns J. ISIJ Int, 1994; 34: 366
[29] Luo J J, Hu W Y, Chen J C, Wang J A. J Chin Electron Microsc Soc, 2012; 31: 1
[29] (骆靓鉴, 胡汪洋, 陈纪昌, 王均安. 电子显微学报, 2012; 31: 1)
[30] Scheriau S, Pippan R. Mater Sci Eng, 2008; A493: 48
[31] Zheng W W, Yang W Y, Sun Z Q. Acta Metall Sin, 2000; 36: 1161
[31] (郑为为, 杨王玥, 孙祖庆. 金属学报, 2000; 36: 1161)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[13] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[14] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[15] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
No Suggested Reading articles found!