Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1038-1048    DOI: 10.11900/0412.1961.2015.00035
Current Issue | Archive | Adv Search |
EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY
Yumin WANG,Shuangming LI(),Hong ZHONG,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Yumin WANG,Shuangming LI,Hong ZHONG,Hengzhi FU. EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY. Acta Metall Sin, 2015, 51(9): 1038-1048.

Download:  HTML  PDF(9068KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Homogeneous distribution of primary dendritic arm spacing (PDAS) is required to achieve uniform mechanical properties in final product of single-crystal superalloys. In this work, the dendrite characterization and orientation of Ni-based single-crystal DD6 superalloy have been deeply investigated using different methods, which include minimum spanning tree (MST), Voronoi polygon-based approach, fast Fourier transform (FFT), as well as EBSD and RO-XRD. The investigation results indicate that the mean PDAS of DD6 superalloy is about 325.7 mm and its variation ratio is 7.38%. The measured Voronoi polygon parameters suggest that the number of nearest-neighbor dendrite ranges from 5.87 to 5.93, approximating six nearest neighbors in the spatial distribution of dendrite microstructures. However, the change in ratio of six nearest number proportion has exceeded 30% for the twenty specimens. The MST method shows that the change in branch length measured from the twenty specimens achieves 26.95%. Also, the analysis results of FFT imply that the dendrite microstructures of DD6 superalloy evolve apparently. These results give the proof that the dendrite microstructures of DD6 superalloy vary with the solidified distance. Additionally, the deviation angles between preferential orientations of DD6 with the axial direction of specimen were measured by EBSD and RO-XRD, respectively. The deviation angle values of DD6 superalloy in this experiment are both within 10°. The reason for the deviation angle measured by RO-XRD being smaller is well explained due to the fact of selecting the diffraction intensity maximum angles. Furthermore, the EBSD results indicate that the orientations of DD6 superalloy prepared by grain selector can be well controlled along the Z-axial direction, but do not work in other two X and Y directions.

Key words:  Ni-based single-crystal superalloy      microstructure uniformity      primary dendrite      deviation angle     
Fund: Supported by National Natural Science Foundation of China (No.51323008), Fundamental Research Funds for the Central Universities (No.3102014JCQ01021) and Fund of State Key Laboratory of Solidification Processing in NWPU (No.101-QP-2014 )

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00035     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1038

Fig.1  Schematic of the specimens No.1~No.20 taken from the cylindrical ingot of single-crystal DD6 superalloy
Fig.2  Cross-section microstructures (a, c, e) and high magnified images (b, d, f) of specimens No.5 (a, b), No.10 (c, d) and No.15 (e, f)
Fig.3  Primary dendrite arm spacings (l) of specimens in directionally solidified single-crystal DD6 superalloy
Fig.4  Cross-sectional dendrite centers of specimens No.5(a) and No.10 (b)
Fig.5  Voronoi polygons of specimens No.5(a) and No.10 (b) (Insets show the high magnified Voronoi polygons)
Fig.6  Frequency distributions of the number of nearest neighbours in the specimens No.5 (a) and No.10 (b)
Fig.7  Gaussian peak fitting to the Voronoi polygons of peak center (a) and peak height and peak width (b)
Fig.8  Branch length distribution of the specimens No.5(a) and No.10 (b) calculated by MST
Fig.9  Mean MST branch length (a) and peak height and peak width (b) with respect to the Gaussian fitting
Fig.10  FFT spectra of the dendrite core of specimens No.1(a), No.5(b), No.10(c), No.15(d) and No.20(e)
Fig.11  Amplitude values of the dendrite core of DD6 superalloy calculated by the FFT
Specimen Dendrite Area Primary Voronoi polygon MST FFT
No. number mm2 spacing mm A0 A1 A2 Mean bra-nch length A0 A1 A2 Ratio amplitude
1 210 21751276.57 321.8 41.60 5.90 1.35 87.02 429.90 87.53 25.89 2.08 8117.846
2 215 21220032.87 314.1 43.74 5.89 1.27 87.07 441.80 87.98 27.62 2.06 8405.335
3 212 22488572.35 325.7 40.39 5.87 1.40 87.91 403.10 89.13 27.25 2.00 8276.027
4 203 21158138.35 322.8 42.63 5.90 1.30 86.82 390.60 88.44 26.69 2.07 8395.902
5 193 19431699.87 317.3 41.11 5.91 1.37 85.85 385.20 86.96 27.68 2.18 8413.233
6 210 22002644.94 323.6 42.67 5.89 1.31 85.66 394.50 87.13 27.13 2.08 8436.542
7 200 19719203.25 314.0 44.82 5.93 1.24 86.42 426.00 88.00 28.05 2.13 8451.840
8 192 19895756.68 321.9 42.28 5.89 1.32 86.20 398.70 87.49 27.83 2.12 8425.713
9 197 19820455.54 317.1 44.25 5.93 1.24 87.14 424.10 87.77 28.36 2.15 8380.658
10 192 20437536.55 326.2 45.05 5.92 1.23 87.28 405.30 88.22 28.57 2.46 8373.676
11 220 23248766.82 325.0 43.82 5.93 1.27 86.99 441.20 88.83 29.34 2.27 8387.368
12 213 21576577.82 318.2 43.14 5.90 1.29 87.71 365.40 88.67 29.00 2.16 8342.011
13 192 20622945.38 327.7 41.73 5.89 1.34 87.62 368.40 88.85 29.34 2.18 8306.541
14 178 19981068.01 335.0 45.03 5.90 1.22 89.12 344.50 90.85 29.41 2.15 8077.239
15 199 21659871.63 329.9 43.91 5.91 1.27 91.43 424.60 92.36 29.69 2.11 7795.426
16 205 21669559.48 325.1 44.15 5.90 1.26 89.96 340.00 91.42 29.65 2.22 8072.992
17 189 21058288.74 333.8 47.22 5.93 1.17 90.08 368.30 92.83 28.90 2.21 8223.490
18 187 21268318.61 337.2 49.87 5.92 1.10 91.69 421.80 93.70 27.73 2.08 8136.745
19 193 21429925.99 333.2 54.43 5.94 1.00 93.40 371.40 95.41 25.41 1.95 8161.441
20 210 22457648.34 327.0 53.32 5.91 1.03 93.84 447.70 96.33 22.04 1.88 8301.709
Change - - 7.38% 31.37% 1.19% 32.03% 9.25% 26.95% 10.42% 27.54% 27.27% 7.93%
ratio
Table1  Experimentally determined statistical measurements of the dendrite on the transverse sections of DD6 superalloy
Fig.12  {001} pole figures (a, e, i) and inverse pole figures (b~d, f~h, j~l) of cross-section of specimens No.1 (a~d), No.3 (e~h) and No.15 (i~l)
Fig.13  RO-XRD patterns of (001) plane of specimens No.1 (a), No.3 (b) and No.15 (c)
Fig.14  Gauss-amplitude fit to the RO-XRD pattern
Specimen No. q1 / (°) q2 / (°) Deviation angle / (°)
1 22.380 29.240 3.43
3 18.740 32.840 7.05
5 20.980 30.640 4.83
7 21.820 29.560 3.87
9 19.840 31.620 5.89
11 20.660 30.420 4.88
13 19.800 31.280 5.74
15 19.740 31.920 6.09
17 17.820 33.620 7.90
20 20.320 31.120 5.40
Table 2  Deviation angles between the dendrite [001] direction and axial direction of transverse section of specimens Nos.1, 3, 5, 7, 9, 11, 13, 15, 17 and 20
[1] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31(12): 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31(12): 1)
[2] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 1 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 1)
[3] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281 (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[4] Zhang H, Xu Q Y, Shi Z X, Liu B C. Acta Metall Sin, 2014; 50: 345 (张 航, 许庆彦, 史振学, 柳百成. 金属学报, 2014; 50: 345)
[5] Warnken N, Reed R C. IOP Conf Ser: Mater Sci Eng, 2011; 27: 012012
[6] Brundidge C L, Vandrasek D, Wang B. Metall Mater Trans, 2012; 43A: 965
[7] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177
[8] Zhao X B, Liu L, Yang C B, Zhang J, Li Y L, Fu H Z. J Mater Eng, 2012; (1): 93 (赵新宝, 刘 林, 杨初斌, 张 军, 李玉龙, 傅恒志. 材料工程, 2012; (1): 93)
[9] Han G M, Yu J J, Hu Z Q, Sun X F. Mater Charact, 2013; 86: 177
[10] McCartney D G, Hunt J D. Acta Metall, 1981; 29: 1851
[11] Tschopp M A, Miller J D, Oppedal A L, Solanki K N. Metall Mater Trans, 2014; 45A: 426
[12] Wilson B C, Cutler E R. Mater Sci Eng, 2008; A479: 356
[13] Xuan X, Xu L, Zeng C. Adv Mater Res, 2012; 452: 51
[14] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[15] Tewari S N, Weng Y H, Ding G L, Trivedi R. Metall Mater Trans, 2002; 33A: 1229
[16] Guo Y H. Probability Theory and Mathematical Statistics. Beijing: Science Press, 2011: 99 (郭跃华. 概率论与数理统计. 北京: 科学出版社, 2011: 99)
[17] Datta A, Dutta S, Pal S K, Sen R. J Mater Pro Tech, 2013; 213: 2339
[18] Sweeney S M, Middleton A A. Phys Rev, 2013; 88(3): 1
[19] Gonzalez R C, translated by Ruan Q Q, Ruan Y Z. Digital Image Processing. Beijing: Publishing House of Electrionics Industry, 2007: 117 (Gonzalez R C著,阮秋琦,阮宇智译. 数字图像处理. 北京: 电子工业出版社, 2007: 117)
[20] Gao K, Li S M, Fu H Z. Adv Mater Lett, 2011; 2: 368
[21] He G, Li J G, Mao X M, Fu H Z. J Mater Eng, 1994; (2): 1 (何 国, 李建国, 毛协民, 傅恒志. 材料工程, 1994; (2): 1)
[22] Hui J, Tiwari R, Wu X, Tewari S N, Trivedi R. Metall Mater Trans, 2002; 33A: 3499
[23] Hunt D, Lu S Z. Metall Mater Trans, 1996; 27A: 611
[24] Liu J L. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2002 (刘金来. 中国科学院金属所博士学位论文, 沈阳, 2002)
[25] Onyszko A, Bogdanowicz W, Kubiak K. Cryst Res Technol, 2010; 61: 7
[26] Guo Z Q, Jin L, Li F. J Appl Phys, 2009; 42: 1
[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] YAN Yuncheng, DING Hongsheng, SONG Jinxia, KANG Yongwang, CHEN Ruirun, GUO Jingjie. EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(9): 1039-1045.
[3] JIANG Liwu LI Shusuo QIU Zicheng HAN Yafang . EFFECTS OF WITHDRAWAL RATE ON MICROSTRUCTURE AND STRESS RUPTURE PROPERTIES OF A Ni3Al–BASED SINGLE CRYSTAL SUPERALLOY IC6SX[J]. 金属学报, 2009, 45(5): 547-552.
[4] HUANG Taiwen LIU Lin ZHANG Weiguo ZHANG Jun FU Hengzhi. INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3[J]. 金属学报, 2009, 45(10): 1225-1231.
[5] HE Guo;LI Jianguo;MAO Hiemin;FU Hengzhi(Northwestern Polytechnical University;Hi'an 710072)(Manuscript received 1994-09-13.in revised form 1995-03-13). INFLUENCE OF CRYSTAL ORIENTATION ON THE PRIMARY DENDRITE ARM SPACING OF A SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 1995, 31(7): 309-314.
No Suggested Reading articles found!