Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 580-586    DOI: 10.11900/0412.1961.2014.00512
Current Issue | Archive | Adv Search |
SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY
Shaojun LIU,Guangyu YANG(),Wanqi JIE
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Shaojun LIU, Guangyu YANG, Wanqi JIE. SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY. Acta Metall Sin, 2015, 51(5): 580-586.

Download:  HTML  PDF(2542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Zn-Gd base alloys possess much superiority, such as, high strength, light weight, low cost, etc., and favorable for the application in various airframe components. Two kinds of eutectic phases, such as, W(Mg3Zn3Gd2) and I(Mg3Zn6Gd), can be usually found in Mg-Zn-Gd alloy under the traditional casting conditions. The interface between W phase and α(Mg) is incoherent and thus weak. However, I phase has quasiperiodic lattice leading to a coherent interface between I phase and α(Mg). Therefore, compared with W phase, I phase is more effective to obstruct dislocations slipping and so efficiently strengthening the alloy. So, controlling the solidification path, i.e., controlling the relative amount of I phase and W phase, is critical for increasing the heat resistant of Mg-Zn-Gd magnesium alloy. In this work, the solidification path of Mg-4.58Zn-2.6Gd ternary casting alloy was investigated by experiments and numerical analysis. Experimental results showed that at lower cooling rate (≤0.75 K/s), α+W(Mg3Zn3Gd2) eutectic will be formed first, while at higher cooling rate (≥7.71 K/s), α(Mg)+I(Mg3Zn6Gd) eutectic will be formed first. A numerical model for predicting solidification path of the primary phase in multi-component alloy with considering the effects of solute diffusion in liquid phase and the cooling rate was developed. The thermodynamic data in the computation model was obtained by using the database of Thermo-Calc. The numerical results were in favorable agreement with the experimental ones. The numerical model established in this work provides a direct and easy way to predict solidification path of Mg-Zn-Gd alloy for different casting conditions. The validity of this model was further confirmed by other three different Mg-Zn-Gd alloys, i.e., Mg-3.8Zn-2.0Gd, Mg-5.5Zn-2.0Gd and Mg-5.5Zn-4Gd. It is also found that for Mg-Zn-Gd alloy, the higher Zn-content and the higher cooling rate will promote the formation of I phase. However, higher Gd-content and the lower cooling rate is favorable for the formation of W phase.

Key words:  Mg-Zn-Gd ternary magnesium alloy      solidification path      cooling rate      numerical model     
Received:  15 September 2014     
Fund: National Natural Science Foundation of China (Nos.51071129 and 51227001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00512     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/580

Fig.1  Schematic of the casting mould (unit: mm)
Fig.2  Cooling curves of Mg-4.58Zn-2.6Gd alloy in different moulds
Fig.3  Low (a~d) and high (e~h) magnified SEM images of Mg-4.58Zn-2.6Gd alloy in copper mould (a, e), graphite mould (b, f), sand mould (c, g) and insulated mould (d, h)
Phase Position Zn Gd Mg
Eutectic phase A1 17.01 2.77 80.23
B1 21.59 3.65 74.76
C1 29.94 15.77 54.29
D1 44.13 23.82 32.06
Matrix A2 1.64 0.29 98.07
B2 1.45 0.21 98.34
C2 1.27 0.11 98.62
D2 1.08 0.09 98.83
Table 1  EDS analysis results of second phase and matrix of Mg-4.58Zn-2.6Gd alloy as shown in Fig.3 (atomic fraction / %)
Fig.4  XRD spectra of Mg-4.58Zn-2.6Gd alloy solidified under different cooling rates
Fig.5  Calculated solidification paths of Mg-4.58Zn-2.6Gd alloy in different casting moulds
Parameter Unit Value Ref.
H J ? mol-1 1.09×104 [23]
cp J ? mol-1 ? K-1 161 [23]
DZn m2 ? s-1 5×10-9 [24]
DGd m2 ? s-1 1×10-9 [24]
Table 2  Physical parameters used in the solidification calculation of Mg-Zn-Gd alloy[23,24]
Fig.6  Comparison of the volume fractions of solidified phases between the calculated and experimental results of Mg-4.58Zn-2.6Gd alloy solidified in different moulds
Fig.7  Simulation results of solidification paths of alloy A (Mg-3.8Zn-2.0Gd), alloy B (Mg-5.5Zn-2.0Gd) and alloy C (Mg-5.5Zn-4Gd) ( T ˙ —cooling rate)
Fig.8  XRD spectra of alloys A, B and C in metal mould (a) and sand mould (b)
[1] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J. Acta Metall Sin (Engl Lett), 2008; 21: 313
[2] Huang H, Chen C L, Wang Z C, Li Y P, Yuan G Y. Mater Sci Eng, 2013; A581: 73
[3] Liu Y, Yuan G, Ding W, Lu C. J Alloys Compd, 2007; 427: 160
[4] Yang J, Wang L D, Wang L M, Zhang H J. J Alloys Compd, 2008; 459: 274
[5] Liu Y, Yuan G Y, Lu C, Ding W J. Scr Mater, 2006; 55: 919
[6] Liu Y, Shao S, Xu C S, Zeng X S, Yang X J. Mater Sci Eng, 2013; A588: 76
[7] Liu Y, Yuan G Y, Zhang S, Zhang X P, Ding W J. Mater Trans, 2008; 49: 941
[8] Jie W Q, Zhang R J, He Z. Mater Sci Eng, 2005; A413: 497
[9] Zhao G W, Li X Z, Xu D M, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2011; 47: 1135 (赵光伟, 李新中, 徐达鸣, 傅恒志, 杜 勇, 贺跃辉. 金属学报, 2011; 47: 1135)
[10] Jie W Q,Jian Z Y,Liu L,Yang G Y,Li S M,Shen J,Wang H M. Casting Technology. Beijing: Higher Education Press, 2013: 4 (介万奇,坚增运,刘 林,杨光昱,李双明,沈 军,王华明. 铸造技术. 北京: 高等教育出版社, 2013: 4 )
[11] Wu M, Li J, Ludwig A, Kharcha A. Comp Mater Sci, 2013; 79: 830
[12] Mehrabian R, Flemings M C. Metall Trans, 1970; 1A: 455
[13] Clyne T W, Kurz W. Metall Trans, 1981; 12A: 965
[14] Ohnaka I. Trans ISIJ, 1986; 26: 1045
[15] Kobayashi S. Trans ISIJ, 1988; 28: 728
[16] Liu S J, Yang G Y, Zhang S L, Jie W Q. Spec Casting Nonferrous Alloys, 2011; 31: 278 (刘少军, 杨光昱, 张胜利, 介万奇. 特种铸造及有色合金, 2011; 31: 278)
[17] Sundman B, Jansson B, Andersson J O. Calphad, 1985; 9: 153
[18] Dupont J N, Robino C V, Marder A R. Acta Mater, 1998; 46: 4781
[19] Rappaz M, Boettinger W J. Acta Mater, 1999; 47: 3205
[20] Zhou J X, Yang Y S, Tong W H, Wang J, Fu J W, Wang B. Rare Met Mater Eng, 2010; 39: 1899
[21] Andersson J O, Thomas H, Sundman B. Calphad, 2002; 26: 273
[22] Hillert M. J Alloys Compd, 2001; 320: 161
[23] Qi H Y, Huang G X, Bo H, Xu G L, Liu L B, Jin Z P. J Mater Sci, 2012; 47: 1319
[24] Furer U, Wunderlin R. Metal Solidification. Stuttgart: DGM Fachber, 1977: 1
[25] Zhang R J. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2004 (张瑞杰. 西北工业大学博士学位论文, 西安, 2004)
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] YANG Yong, HE Quanfeng. Lattice Distortion in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 385-392.
[5] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[8] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[9] Houfa SHEN, Kangxin CHEN, Baicheng LIU. Numerical Simulation of Macrosegregation inSteel Ingot Casting[J]. 金属学报, 2018, 54(2): 151-160.
[10] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[11] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[12] Xiaofeng HU,Yubin DU,Desheng YAN,Lijian RONG. Cu Precipitation and Its Effect on Damping Capacity and Mechanical Properties of FeCrMoCu Alloy[J]. 金属学报, 2017, 53(5): 601-608.
[13] Erhu YAN,Lixian SUN,Fen XU,Daming XU. PREDICTION OF THE SOLIDIFICATION PATH OF Al-6.32Cu-25.13Mg ALLOY BY A UNIFIED MICROSEGREGATION MODEL COUPLED WITH THERMO-CALC[J]. 金属学报, 2016, 52(5): 632-640.
[14] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[15] Juan MU,Dongmei WANG,Yandong WANG. EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES[J]. 金属学报, 2015, 51(12): 1435-1440.
No Suggested Reading articles found!