Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 840-848    DOI: 10.11900/0412.1961.2018.00558
  本期目录 | 过刊浏览 |
Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响
魏琳1,王志军1(),吴庆峰1,尚旭亮2,李俊杰1,王锦程1
1. 西北工业大学凝固技术国家重点实验室 西安 710072
2. 中信戴卡股份有限公司 秦皇岛 066011
Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution
Lin WEI1,Zhijun WANG1(),Qingfeng WU1,Xuliang SHANG2,Junjie LI1,Jincheng WANG1
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
2. Citic Daika Co. , Ltd. , Qinhuangdao 066011, China
引用本文:

魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
Lin WEI, Zhijun WANG, Qingfeng WU, Xuliang SHANG, Junjie LI, Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. Acta Metall Sin, 2019, 55(7): 840-848.

全文: PDF(15275 KB)   HTML
摘要: 

利用循环极化曲线、激光共聚焦扫描显微镜(LSCM)、 SEM和 XPS等测试方法研究了Mo元素及热处理对Ni2CrFeMox高熵合金在3.5%NaCl (质量分数)溶液中耐蚀性能的影响。结果表明,铸态Ni2CrFeMox高熵合金的耐蚀性能明显高于316L不锈钢,其中Ni2CrFeMo0.2合金具有最小的维钝电流密度和腐蚀电流密度,耐蚀性能最好。过量Mo元素导致合金中析出σ相,发生电偶腐蚀,降低合金的耐蚀性能。固溶处理后,σ相的溶解及元素分布的均匀化减弱了电偶腐蚀的发生,耐蚀性能明显提高。

关键词 Mo元素高熵合金固溶处理耐蚀性能    
Abstract

As a new alloy design concept, the high-entropy alloy (HEA) and the formation of simple solid solution introduce excellent properties such as high hardness, high strength and corrosion resistance. Investigations have shown that the single solid solution CrCoFeNi alloy possesses good corrosion resistance. The addition of Mo is beneficial to the corrosion resistance of the HEAs for potential industrial applications in 3.5%NaCl (mass fraction) simulating seawater type environments. The major effect of Mo is to promote the pitting potential of the alloy and inhibit the dissolution of the passivation film by forming and retaining molybdenum oxyhydroxide or molybdates (MoO42-). Considering that the cost of pure Co is higher, Ni and Co elements have similar atomic size and valence electron concentration, and the corrosion resistance of pure Ni is higher than that of pure Co, Ni2CrFeMox HEA was designed by replacing Co element with Ni element in CoCrFeNiMox HEA. As the Mo content increases in the Ni2CrFeMox HEAs, the interdendrite is a Cr and Mo rich σ phase, and the dendrite is a Cr and Mo depleted fcc phase. The potential difference between interdendrites and dendrites leads to galvanic corrosion, which accelerates the localized corrosion of alloys. Here, a solution heat treatment process is selected to reduce the precipitation phase and improve the corrosion resistance of the alloy. The effects of Mo element and heat treatment on the corrosion resistance of Ni2CrFeMox HEA in 3.5%NaCl solution were tested. The results show that the corrosion resistance of as-cast Ni2CrFeMox HEA is obviously higher than that of 316L stainless steel. The Ni2CrFeMo0.2 alloy has the best corrosion resistance because of its minimum dimensional passive current density and corrosion current density. However, the addition of excessive Mo leads to the precipitation of σ phase and galvanic corrosion, which reduces the corrosion resistance of the alloy. After solution treatment, the uniformity of alloy structure and element distribution weakens galvanic corrosion, and the corrosion resistance is obviously improved.

Key wordsMo element    high entropy alloy    solution treatment    corrosion resistance
收稿日期: 2018-12-21     
ZTFLH:  TG132  
基金资助:国家自然科学基金项目(Nos.51471133);国家自然科学基金项目(51771149)
作者简介: 魏 琳,女,1995年生,硕士
图1  铸态Ni2CrFeMo
MaterialEcorr / mVicorr / (μA·cm-2)ipass / (μA·cm-2)Eb / mVEprot / mV
Ni2CrFeMo0.1-1352.13018.350986380
Ni2CrFeMo0.2-1790.8965.404920792
Ni2CrFeMo0.3-1031.95915.118896780
Ni2CrFeMo0.4-1211.71113.492954774
Ni2CrFeMo0.5-1252.01414.130966750
NiCoCrFeMo0.2[12]-1310.07216.000941747
316L-762.46322.135439-
表1  铸态Ni2CrFeMox合金和316L不锈钢在3.5%NaCl溶液中的电化学参数
图2  铸态Ni2CrFeMox合金和316L不锈钢在3.5%NaCl溶液中极化后的SEM像
图3  热处理态Ni2CrFeMox合金在3.5%NaCl溶液中的循环极化曲线
MaterialEcorr / mVicorr / (μA·cm-2)ipass / (μA·cm-2)Eb / mVEprot / mVErp / mV
Ni2CrFeMo0.1-1470.8017.302915802401
Ni2CrFeMo0.2-1830.3261.612952785497
Ni2CrFeMo0.3-2121.7458.548945780628
Ni2CrFeMo0.4-2361.8079.152890763382
Ni2CrFeMo0.5-2221.3238.810870744367
表2  热处理态Ni2CrFeMox合金在3.5%NaCl溶液中的电化学参数
图4  热处理态Ni2CrFeMox合金在3.5%NaCl溶液中极化后的SEM像
图5  铸态和热处理态Ni2FeCrMo0.2合金(未被极化腐蚀)的EDS面扫描图
图6  铸态 Ni2FeCrMox合金在3.5%NaCl溶液中的EIS
图7  铸态和热处理态Ni2FeCrMo0.2合金在3.5%NaCl溶液中的EIS
图8  铸态和热处理态Ni2CrFeMo0.2合金在3.5%NaCl溶液中恒电位+450 mV极化4 h后的XPS谱
ConditionCr(+3)/(0)Fe(+3)/(0)Mo(+6)/(+4)/(0)Ni(+2)/(0)
As-cast14.465.4661.29∶15.54∶23.170.46
Heat-treated17.991.5267.5∶15.18∶17.321.01
表3  铸态和热处理态Ni2CrFeMo0.2合金中各元素经XPS分析后不同氧化态之间的原子比
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution [J]. Mater. Chem. Phys., 2005, 92: 112
[3] Yang H O, Shang X L, Wang L L, et al. Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
[3] (杨海欧, 尚旭亮, 王理林等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905)
[4] Wang D. Structure and mechanical properties of CoCrFeNiCu high-entropy alloys [D]. Shenyang: Shenyang University of Technology, 2014
[4] (王 夺. CoCrFeNiCu系高熵合金的组织和力学性能 [D]. 沈阳: 沈阳理工大学, 2014)
[5] Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2015, A648: 15
[6] Shun T T, Chang L Y, Shiu M H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys [J]. Mater. Charact., 2012, 70: 63
[7] Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
[8] Rodriguez A A, Tylczak J H, Gao M C, et al. Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions [J]. Adv. Mater. Sci. Eng., 2018, 2018: 3016304
[9] Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments [J]. Corros. Sci., 2010, 52: 2571
[10] Shang X L, Wang Z J, Wu Q F, et al. Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMox in aqueous environments [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 41
[11] Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
[12] Hayes J R, Gray J J, Szmodis A W, et al. Influence of chromium and molybdenum on the corrosion of nickel-based alloys [J]. Corrosion, 2006, 62: 491
[13] Shi Y Z. Microstructures and corrosion-resistant properties of AlxCoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
[13] (石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018)
[14] Shao F X, Zhao R F, Wang X L, et al. Corrosion resistance of CrxCuFe2Mo0.5Nb0.5Ni2 high-entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 1092
[14] (邵凤翔, 赵瑞锋, 王新莉等. CrxCuFe2Mo0.5Nb0.5Ni2高熵合金的耐蚀性能 [J]. 特种铸造及有色合金, 2016, 36: 1092)
[15] Wen X, Jin G, Pang X J, et al. Effect of heat treatment on microstructure and corrosion resistance of NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering [J]. Mater. Rev., 2018, 31(12): 79
[15] (温 鑫, 金 国, 庞学佳等. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响 [J]. 材料导报, 2018, 31(12): 79)
[16] Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy [J]. Intermetallics, 2010, 18: 1244
[17] Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
[18] He F, Wang Z J, Zhu M, et al. The phase stability of Ni2CrFeMoxmulti-principal-component alloys with medium configurational entropy [J]. Mater. Des., 2015, 85: 1
[19] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions [M]. Houston, Texas: National Association of Corrosion Engineers, 1974: 307
[20] Simmons J W. Overview: High-nitrogen alloying of stainless steels [J]. Mater. Sci. Eng., 1996, A207: 159
[21] Nilsson J O. Super duplex stainless steels [J]. Mater. Sci. Technol., 1992, 8: 685
[22] Wilde B E. A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloys in sea water [J]. Corrosion, 1972, 28: 283
[23] Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta, 2007, 52: 7193
[24] Shi Y Z, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
[25] Allen G C, Tucker P M, Wild R K. X-ray photoelectron/auger electron spectroscopic study of the initial oxidation of chromium metal [J]. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys., 1978, 74: 1126
[26] Leiro J A, Minni E E. The XPS valence band of chromium [J]. Philos. Mag., 1984, 49B: L61
[27] Myers C E, Franzen H F, Anderegg J W. X-ray photoelectron spectra and bonding in transition-metal phosphides [J]. Inorg. Chem., 1985, 24: 1822.
[28] Nefedov V I, Salyn Y V, Leonhardt G, et al. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy [J]. J. Electron. Spectrosc. Relat. Phenom., 1977, 10: 121
[29] Li C P, Proctor A, Hercules D M. Curve fitting analysis of ESCA Ni 2p spectra of nickel-oxygen compounds and Ni/Al2O3 catalysts [J]. Appl. Spectrosc., 1984, 38: 880
[30] Zingg D S, Makovsky L E, Tischer R E, et al. A surface spectroscopic study of molybdenum-alumina catalysts using X-ray photoelectron, ion-scattering, and Raman spectroscopies [J]. J. Phys. Chem., 1980, 84: 2898
[31] de Vries J E, Yao H C, Baird R J, et al. Characterization of molybdenum-platinum catalysts supported on γ-alumina by X-ray photoelectron spectroscopy [J]. J. Catal., 1983, 84: 8
[32] Cimino A, De Angelis B A. The application of X-ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts [J]. J. Catal., 1975, 36: 11
[33] Li P, Pang S J, Zhao J, et al. Corrosion behavior of CoCrFeNiTi0.5 high entropy alloy in molten Na2SO4-25%NaCl [J]. Chin. J. Nonferrous Met., 2015, 25: 367
[33] (李 萍, 庞胜娇, 赵 杰等. CoCrFeNiTi0.5高熵合金在熔融Na2SO4-25%NaCl中的腐蚀行为 [J]. 中国有色金属学报, 2015, 25: 367)
[34] Sugimoto K, Sawada Y. The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions [J]. Corros. Sci., 1977, 17: 425
[35] Sugimoto K, Sawada Y. The role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions [J]. Corrosion, 1976, 32: 347
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[6] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[9] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[10] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[11] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[12] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[13] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[14] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.