Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 859-874    DOI: 10.11900/0412.1961.2019.00044
  本期目录 | 过刊浏览 |
静水压力对超纯Fe腐蚀行为的影响
马荣耀1,2,王长罡1,穆鑫1,魏欣1,赵林1,董俊华1(),柯伟1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
Influence of Hydrostatic Pressure on Corrosion Behavior of Ultrapure Fe
Rongyao MA1,2,Changgang WANG1,Xin MU1,Xin WEI1,Lin ZHAO1,Junhua DONG1(),Wei KE1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
Rongyao MA, Changgang WANG, Xin MU, Xin WEI, Lin ZHAO, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on Corrosion Behavior of Ultrapure Fe[J]. Acta Metall Sin, 2019, 55(7): 859-874.

全文: PDF(16786 KB)   HTML
摘要: 

采用失重测试、动电位极化和电化学噪声研究了静水压力对超纯Fe在3.5%NaCl中腐蚀行为的影响。利用离散小波分析方法去除噪声信号的直流漂移,然后进行散粒噪声和随机分析;利用Hilbert-Huang变换对噪声信号进行时频分析;用SEM观察腐蚀试样的表面形貌。失重测试和动电位极化的研究结果表明,增大静水压力提高了超纯Fe在3.5%NaCl中的腐蚀速率。电化学噪声分析结果表明,在整个浸泡期间,增大静水压力促进了点蚀的发展,提高了局部腐蚀的倾向。在浸泡初期,超纯Fe以发生局部腐蚀(如点蚀形核、亚稳态点蚀、点蚀)的模式为主,增大静水压力对点蚀形核过程有一定的抑制作用,降低了点蚀孕育速率,但对亚稳态点蚀和稳态点蚀的发展过程有促进作用,提高了点蚀生长概率;随着浸泡时间的延长,其逐渐转为以均匀腐蚀的模式为主,增大静水压力仍然促进亚稳态点蚀和稳态点蚀的发展,提高点蚀生长概率,但是却相对地抑制了均匀腐蚀过程。

关键词 静水压力电化学噪声散粒噪声理论随机分析Hilbert-Huang变换    
Abstract

Hydrostatic pressure is part of the crucial factors affecting deep sea corrosion. At present, there have been a lot of studies on the pitting behavior of metallic materials under hydrostatic pressure, but most of them take passive metallic materials as the research object, and the influence rule of hydrostatic pressure on the pitting behavior of metallic materials also presents diversity. People not only have no clear understanding of its mechanism, but also have some disputes. The generation and growth of pitting corrosion are dependent on the structure of materials, chemical composition and service environment. Inclusion, passivation ability and surface roughness can all affect the pitting behavior of metal materials. Due to the single composition and simple structure of ultrapure Fe, the influence of phase, inclusion and other factors on corrosion behavior under hydrostatic pressure can be avoided, which is more conducive to elucidate the mechanism of hydrostatic pressure on metal corrosion behavior. In addition, the influence of hydrostatic pressure on the corrosion behavior of ultrapure Fe is rarely reported. So, the effect of hydrostatic pressure on the corrosion behavior of ultrapure Fe exposed to 3.5%NaCl aqueous solution is investigated by potentiodynamic polarization curves and electrochemical noise method. The noise signals are analyzed by shot noise theory, stochastic analysis and Hilbert-Huang transform. Besides, the surface morphology of the corrosion sample is observed by SEM. The results of weight loss test and potentiodynamic polarization study show that increasing hydrostatic pressure accelerated the corrosion rate of ultrapure Fe exposed to 3.5%NaCl. The results of electrochemical noise study show that increasing hydrostatic pressure promotes the development of pitting corrosion and increases the tendency of local corrosion throughout the immersion. At the beginning of soaking, local corrosion (such as pitting nucleation, metastable pitting and stable pitting) mainly occurred in ultrapure Fe, increasing of hydrostatic pressure inhibits the pitting nucleation process, but promotes the development of metastable pitting and steady pitting, and increases the growth probability of pitting. With the immersion time prolonging, the uniform corrosion gradually changed into the principal corrosion type, increasing hydrostatic pressure still promotes the development of metastable pitting and stable pitting and improves the growth probability of pitting corrosion, but relatively inhibits the uniform corrosion process.

Key wordshydrostatic pressure    electrochemical noise    shot noise theory    stochastic analysis    Hilbert-Huang transform
收稿日期: 2019-02-15     
ZTFLH:  O646.6,TG171  
基金资助:国家重点研发计划项目(No.2017YFB0702302);国家自然科学基金项目(Nos.51671200);国家自然科学基金项目(51501204);国家自然科学基金项目(51801219)
作者简介: 马荣耀,男,1987年生,博士
No.CrystalFrequency scale / HzTime scale / s
1D110~50.1~0.2
2D25~2.50.2~0.4
3D32.5~1.250.4~0.8
4D41.25~0.6250.8~1.6
5D50.625~0.31251.6~3.2
6D60.3125~0.15633.2~6.4
7D70.1563~0.07816.4~12.8
8D80.0781~0.039112.8~25.6
9D90.0391~0.019525.6~51.2
10D100.0195~0.009851.2~102.4
表1  电化学噪声测试采样间隔为0.1 s时,10层分解后各个小波系数对应的时间及频率范围
图1  模拟深海腐蚀电化学测试系统示意图
图2  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中浸泡2.16×104 s后的极化曲线
图3  超纯Fe的OM像
图4  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中浸泡6.2×104 s后表面SEM像
图5  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中的电化学电位噪声(EPN)谱
图6  0.1和10 MPa静水压力下,超纯Fe在3.5% NaCl中的电化学电流噪声(ECN)谱
图7  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中0~6.2×104 s内噪声电阻(Rn)随时间的变化图和累积概率图
图8  0.1和10 MPa静水压力下超纯Fe在3.5%NaCl中0~6.2×104 s内腐蚀事件发生的频率(fn)和腐蚀事件的平均电量(q)随时间的变化图
图9  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe在3.5%NaCl中的q-fn图
图10  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe在3.5%NaCl中fn的Weibull分布图
图11  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe在3.5%NaCl中均匀腐蚀孕育速率随浸泡时间变化图
图12  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe在3.5%NaCl中点蚀孕育速率随浸泡时间变化图

Corrosion style

Pressure

MPa

0~2.5×104 s2.5×104~6.2×104 s
mnmn
Pitting corrosion0.10.42990.02020.55938.7726×10-4
100.45830.03230.73956.2403×10-4
Uniform corrosion0.11.34117.2016×10-72.24362.9423×10-12
101.76971.1158×10-82.78435.1289×10-14
表2  0.1和10 MPa静水压力下,由Weibull分布图的线性部分确定的超纯Fe在3.5%NaCl中的形状参数(m)和尺度参数(n)的数值
图13  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe在3.5%NaCl中q的Gumbel分布图
图14  0.1和10 MPa静水压力下,0~2.5×104和2.5×104~6.2×104 s内超纯Fe的点蚀生长概率(Pc) -q图

Corrosion style

Pressure

MPa

0~2.5×104 s2.5×104~6.2×104 s
αμ / Cαμ / C
Metastable pitting0.15.10×10-9-2.95×10-93.85×10-114.69×10-11
101.92×10-8-1.05×10-97.41×10-107.41×10-11
Stable pitting0.11.59×10-8-3.24×10-8--
104.00×10-8-2.76×10-8--
表3  0.1和10 MPa静水压力下,依据Gumbel分布图计算所得尺度参数(α)和位置参数(μ)
图15  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中4种典型EPN的Hilbert谱
图16  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中EPN和ECN的Hilbert边际谱随时间变化图
图17  0.1和10 MPa静水压力下,超纯Fe在3.5%NaCl中EPN和ECN的Hilbert边际谱
[1] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminium in sea water [J]. Br. Corros. J., 1985, 20: 183
[2] Beccaria A M, Poggi G. Influence of hydrostatic pressure and salt concentration on aluminum corrosion in NaCl solutions [J]. Corrosion, 1986, 42: 470
[3] Beccaria A M, Poggi G. Aluminum corrosion in slightly alkaline sodium sulfate solutions at different hydrostatic pressures [J]. Corrosion, 1987, 43: 153
[4] Beccaria A M, Poggi G. Effect of some surface treatments on kinetics of aluminium corrosion in NaCl solutions at various hydrostatic pressures [J]. Br. Corros. J., 1986, 21: 19
[5] Beccaria A M, Fiordiponti P, Mattogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl? ions [J]. Corros. Sci., 1989, 29: 403
[6] Beccaria A M, Poggi G, Arfelli M, et al. The effect of salt concentration on nickel corrosion behaviour in slightly alkaline solutions at different hydrostatic pressures [J]. Corros. Sci., 1993, 34: 989
[7] Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
[8] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[9] Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
[10] Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
[11] Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure [J]. Electrochim. Acta, 2016, 210: 401
[12] Wang Z Y, Cong Y, Zhang T. Effect of hydrostatic pressure on the pitting corrosion behavior of 316L stainless steel [J]. Int. J. Electrochem. Sci., 2014, 9: 778
[13] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int. J. Hydrogen Energy, 2017, 42: 27446
[14] Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials (Basel), 2017, 10: 1307
[15] Gupta R K, Sukiman N L, Cavanaugh M K, et al. Metastable pitting characteristics of aluminium alloys measured using current transients during potentiostatic polarisation [J]. Electrochim. Acta, 2012, 66: 245
[16] Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2014, 85: 372
[17] Burstein G T, Pistorius P C. Surface roughness and the metastable pitting of stainless steel in chloride solutions [J]. Corrosion, 1995, 51: 380
[18] Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[19] Wang H, Xie J, Yan K P, et al. The nucleation and growth of metastable pitting on pure iron [J]. Corros. Sci., 2009, 51: 181
[20] Junghans A, Chellappa R, Wang P, et al. Neutron reflectometry studies of aluminum-saline water interface under hydrostatic pressure [J]. Corros. Sci., 2015, 90: 101
[21] Beccaria A M, Ltraverso P, Poggi G, et al. Effect of hydrostatic pressure on corrosion behaviour of 5086 Al-alloy in sea water [J]. High Pressure Res., 1991, 7: 347
[22] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water [J]. Br. Corros. J., 1994, 29: 65
[23] Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160(3): C89
[24] Liu B, Zhang T P, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behavior of pure nickel [J]. Int. J. Electrochem. Sci., 2012, 7: 1864
[25] Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
[25] (马荣耀, 赵 林, 王长罡等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281)
[26] Na K H, Pyun S I. Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis [J]. J. Electroanal. Chem., 2006, 596: 7
[27] Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663
[28] Na K H, Pyun S I, Kim H P. Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions [J]. Corros. Sci., 2007, 49: 220
[29] Zhang T, Yang Y G, Shao Y W, et al. Advances of the analysis methodology for electrochemical noise [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1
[29] (张 涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 1)
[30] Cottis R A, Al-Awadhi M A A, Al-Mazeedi H, et al. Measures for the detection of localized corrosion with electrochemical noise [J]. Electrochim. Acta, 2001, 46: 3665
[31] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280
[32] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787
[33] Sánchez-Amaya J M, Bethencourt M, González-Rovira L, et al. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments [J]. Electrochim. Acta, 2007, 52: 6569
[34] Zhang J. Research on crevice corrosion behaviour of 5083 and 6061 aluminum alloys [D]. Harbin: Harbin Engineering University, 2013
[34] (张 晋. 5083和6061铝合金缝隙腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[35] Na K H, Pyun S I. Electrochemical noise analysis of corrosion of pure aluminium in alkaline solution in the presence of SO42? ion, NO3? ion and Na2S additives [J]. Electrochim. Acta, 2007, 52: 4363
[36] Na K H, Pyun S I. Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis [J]. Corros. Sci., 2008, 50: 248
[37] Park J J, Pyun S I. Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl? ion-containing thiosulphate solution at temperatures 25-150 ℃ by analysis of the potentiostatic current transients [J]. Corros. Sci., 2004, 46: 285
[38] Valor A, Caleyo F, Alfonso L, et al. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits [J]. Corros. Sci., 2007, 49: 559
[39] Trueman A R. Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements [J]. Corros. Sci., 2005, 47: 2240
[40] Engelhardt G, Macdonald D D. Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation [J]. Corros. Sci., 2004, 46: 2755
[41] Macdonald D D, Urquidi-Macdonald M. Corrosion damage function—Interface between corrosion science and engineering [J]. Corrosion, 1992, 48: 354
[42] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[43] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1: 266
[44] Aballe A, Bethencourt M, Botana F J, et al. Use of wavelets to study electrochemical noise transients [J]. Electrochim. Acta, 2001, 46: 2353
[45] Shahidi M, Hosseini S M A, Jafari A H. Comparison between ED and SDPS plots as the results of wavelet transform for analyzing electrochemical noise data [J]. Electrochim. Acta, 2011, 56: 9986
[46] Homborg A M, Tinga T, Zhang X, et al. Time-frequency methods for trend removal in electrochemical noise data [J]. Electrochim. Acta, 2012, 70: 199
[47] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. Roy. Soc., 1998, 454A: 903
[48] Shi W, Dong Z H, Guo X P. Analysis of electrochemical noise by Hilbert-Huang transform and its application [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 138
[48] (石 维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用 [J]. 中国腐蚀与防护学报, 2014, 34: 138)
[49] Rilling G, Flandrin P, Gon?alvès P. On empirical mode decomposition and its algorithms [A]. Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing [C]. Grado, Italy: IEEE, 2003: 8
[50] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank [J]. IEEE Signal Process. Lett., 2004, 11: 112
[51] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 106
[51] (曹楚南. 腐蚀电化学原理 [M]. 第3版, 北京: 化学工业出版社, 2008: 106)
[52] Cottis R A. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265
[53] Gusmano G, Montesperelli G, Pacetti S, et al. Electrochemical noise resistance as a tool for corrosion rate prediction [J]. Corrosion, 1997, 53: 860
[54] Shao Y W, Huang H, Zhang T, et al. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline [J]. Corros. Sci., 2009, 51: 2906
[55] Cao F H, Zhang Z, Su J X, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359
[56] Dong Z H, Guo X P, Zheng J S, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3: 561
[57] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
[58] Cai C, Zhang Z, Cao F H, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. J. Electroanal. Chem., 2005, 578: 143
[59] Homborg A M, van Westing E P M, Tinga T, et al. Novel time-frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97
[60] Homborg A M, Tinga T, Zhang X, et al. Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steel [J]. Electrochim. Acta, 2013, 104: 84
[61] Zhao B, Li J H, Hu R G, et al. Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J]. Electrochim. Acta, 2007, 52: 3976
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[3] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[6] 杜楠 田文明 赵晴 陈四兵. 304不锈钢在3.5\%NaCl溶液中的点蚀动力学及机理[J]. 金属学报, 2012, 48(7): 807-814.
[7] 程英亮; 张鉴清 . NaCl溶液中LC4,LY12及纯铝腐蚀过程的电化学噪声特征[J]. 金属学报, 2002, 38(1): 74-78 .