Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 773-782    DOI: 10.11900/0412.1961.2018.00377
  本期目录 | 过刊浏览 |
316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为
彭剑1,2(),高毅1,代巧2,3,王颖1,李凯尚1
1. 常州大学机械工程学院 常州 213164
2. 常州大学江苏省绿色过程装备重点实验室 常州 213164
3. 江苏理工学院机械工程学院 常州 213001
Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load
Jian PENG1,2(),Yi GAO1,Qiao DAI2,3,Ying WANG1,Kaishang LI1
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China
3. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
引用本文:

彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
Jian PENG, Yi GAO, Qiao DAI, Ying WANG, Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. Acta Metall Sin, 2019, 55(6): 773-782.

全文: PDF(11728 KB)   HTML
摘要: 

对316L奥氏体不锈钢非对称拉-拉疲劳载荷作用下的疲劳和循环塑性行为进行研究。通过疲劳寿命、循环应变幅、平均应变、平均应变率和失效应变的差异划分高、低应力区:在高应力区,平均应变、平均应变率和失效应变大,存在显著的循环塑性变形,疲劳寿命短;在低应力区,循环塑性变形累积有限,疲劳寿命显著增加。通过失效区域的显微组织观察和断口分析发现:在高应力区断口附近产生了大量的孔洞,断口以韧窝为主要特征;在低应力区存在疲劳裂纹,其扩展方向垂直于加载方向,断口由起裂点、疲劳裂纹扩展区、过渡区和快速断裂区组成。316L奥氏体不锈钢高应力区为循环塑性变形主导区,失效形式为循环塑性累积产生的韧性失效;低应力区为疲劳主导区,失效形式为疲劳裂纹扩展失效。

关键词 316L奥氏体不锈钢疲劳循环塑性变形失效模式    
Abstract

Due to excellent mechanical property and corrosion resistance of 316L austenitic stainless steel, it is widely used in chemical industry, but its fatigue behavior under asymmetric cycle load is not well understood. In this work, the fatigue and cyclic plastic deformation behavior of 316L austenitic stainless steel under asymmetric tensile-tensile cycle loading are studied, focusing on the variations of fatigue life, cycle plastic deformation and fracture mechanism with applied cycle load. The high and low stress regions can be clearly divided based on the differences of fatigue life, cyclic strain amplitude, mean strain, mean strain rate and failure strain. In the high stress region, mean strain, mean strain rate and failure strain are large, resulting in the significant cyclic plastic deformation, and the fatigue life is short. In the low stress region, the cyclic plastic deformation accumulation is limited, and the fatigue life is significantly increased. Through microstructural observations near fracture area and fracture surface analyses, the differences between large stress region and low stress region can be found. In the high stress region, a large number of voids are generated near the fracture surface, and the fracture surface is mainly featured by dimples. In contrast, in the low stress region, the fatigue crack is found near the fracture surface, and its propagation direction is perpendicular to the loading direction. The fatigue crack initiation site, the fatigue crack propagation zone, transition zone and rapid fracture zone are found on the fracture surface. Results of fracture mechanism analyses suggest that, the high stress region of 316L austenitic stainless steel is the cyclic plastic deformation dominant region, and the failure mechanism is the ductile failure caused by the accumulation of cyclic plastic deformation; while the low stress region is the fatigue dominant zone, and the failure mechanism is the fatigue crack propagation failure.

Key words316L austenitic stainless steel    fatigue    cyclic plastic deformation    failure mode
收稿日期: 2018-08-16     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(Nos.51805230);国家自然科学基金项目(51505041);江苏省高校自然科学基金项目(No.16KJB460002)
作者简介: 彭 剑,男,1987年生,博士
No.σa / MPaσmax / MPaσmin / MPaNf / cyc
1270.0060060.0314
2-R1261.0058058.0424
2-R2261.0058058.0622
2-R3261.0058058.0664
3-R1256.5057057.0586
3-R2256.5057057.06404
3-R3256.5057057.04664
4-R1252.0056056.026524
4-R2252.0056056.017204
4-R3252.0056056.023864
5247.5055055.034606
6236.2552552.550424
7225.0050050.055759
8213.7547547.589548
9202.5045045.093578
10191.2542542.5124136
表1  316L奥氏体不锈钢疲劳实验方案及疲劳寿命(应力比R=0.1)
图1  316L奥氏不锈钢显微组织的OM像
图2  316L奥氏体不锈钢循环应变幅与循环周次(N)的关系
图3  316L奥氏体不锈钢在不同循环载荷作用下平均应变的演化规律
图4  低应力区和高应力区平均应变和平均应变率随循环次数的演化规律
图5  失效平均应变和半寿命周期平均应变率与最大循环应力的关系
图6  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳载荷加载示意图
图7  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳循环应变幅演化规律
图8  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳载荷下平均应变演化规律
图9  316L奥氏体不锈钢最大应力-疲劳寿命曲线
图10  最大应力为580 MPa时高应力区试样断口表面的OM像
图11  最大应力为525 MPa时低应力区试样断口附近OM像
图12  最大应力为580 MPa时高应力区试样断口形貌的SEM像
图13  最大应力为525 MPa时低应力区试样断口形貌的SEM像
[1] Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693
[1] (张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693)
[2] Li Q, Yan F K, Tao N R. Enhanced fatigue damage resistance of nanotwinned austenitic grains in a nanotwinned stainless steel [J]. Scr. Mater., 2017, 136: 59
[3] Xie X F, Ning D, Sun J. Strain-controlled fatigue behavior of cold-drawn type 316 austenitic stainless steel at room temperature [J]. Mater. Charact., 2016, 120: 195
[4] Mazánová V, ?korík V, Kruml T, et al. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel [J]. Int. J. Fatigue, 2017, 100: 466
[5] Xie X F, Jiang W C, Luo Y, et al. A model to predict the relaxation of weld residual stress by cyclic load: Experimental and finite element modeling [J]. Int. J. Fatigue, 2017, 95: 293
[6] Zhang W Y, Jiang W C, Zhao X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation [J]. Int. J. Fatigue, 2018, 109: 182
[7] Kang G Z, Gao Q, Yang X J. Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: Experiments and simulations [J]. Int. J. Non-Linear Mech., 2004, 39: 843
[8] De P S, Kundu A, Chakraborti P C. Effect of prestrain on tensile properties and ratcheting behaviour of Ti-stabilised interstitial free steel [J]. Mater. Des., 2014, 57: 87
[9] Chen X H, Chen X, Chen H F. Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N [J]. Steel Compos. Struct., 2018, 27: 89
[10] Abdollahi E, Chakherlou T N. Numerical and experimental study of ratcheting in cold expanded plate of Al‐alloy 2024‐T3 in double shear lap joints [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 41
[11] Lin Y C, Chen X M, Chen G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation [J]. J. Alloys Compd., 2011, 509: 6838
[12] Lin Y C, Chen X M, Liu Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy [J]. Int. J. Fatigue, 2013, 48: 122
[13] Rajpurohit R S, Rao G S, Chattopadhyay K, et al. Ratcheting fatigue behavior of Zircaloy-2 at room temperature [J]. J. Nucl. Mater., 2016, 477: 67
[14] Zhu S P, Lei Q, Wang Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 1343
[15] Ding J, Kang G Z , Zhu Y L, et al. Finite element analysis on bending fretting fatigue of 316L stainless steel considering ratchetting and cyclic hardening [J]. Int. J. Mech. Sci., 2014, 86: 26
[16] Facheris G, Pham M S, Janssens K G F, et al. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue [J]. Mater. Sci. Eng., 2013, A587: 1
[17] Luo H L, Kang G Z, Kan Q H, et al. Experimental investigation on the heterogeneous ratchetting of SUS301L stainless steel butt weld joint during uniaxial cyclic loading [J]. Int. J. Fatigue, 2017, 105: 169
[18] Kang G Z, Liu Y J, Li Z. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing [J]. Mater. Sci. Eng., 2006, A435-436: 396
[19] Yan Z F, Wang D H, Wang W X, et al. Ratcheting strain and microstructure evolution of AZ31B magnesium alloy under a tensile-tensile cyclic loading [J]. Materials, 2018, 11: 513
[20] Yuan X Y, Yu W W, Fu S C, et al. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel [J]. Mater. Sci. Eng., 2016, A677: 193
[21] Tian J, Yang Y, Zhang L P, et al. Ratcheting behavior of SA508-3 steel at elevated temperature: Experimental observation and simulation [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 822
[22] Kan Q H, Kang G Z, Zhang J, et al. Experimental study on non-proportionally multiaxial time-dependent cyclic deformations of ss304 stainless steel at high temperature [J]. Acta Metall. Sin., 2005, 41: 963
[22] (阚前华, 康国政, 张 娟等. SS304不锈钢高温非比例多轴加载下时相关循环变形行为的实验研究 [J]. 金属学报, 2005, 41: 963)
[23] Lin Y C, Liu Z H, Chen X M, et al. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings [J]. Mater. Sci. Eng., 2013, A573: 234
[24] Lim C B, Kim K S, Seong J B. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress [J]. Int. J. Fatigue, 2009, 31: 501
[25] Lin Y C, Liu Z H, Chen X M, et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings [J]. Comput. Mater. Sci., 2013, 73: 128
[26] Paul S K, Stanford N, Taylor A, et al. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel [J]. Int. J. Fatigue, 2015, 80: 341
[27] Liang T, Chen X, Cheng H C, et al. Thermal aging effect on the ratcheting-fatigue behavior of Z2CND18.12N stainless steel [J]. Int. J. Fatigue, 2015, 72: 19
[28] Wang W, Zheng X T, Yu J Y, et al. Time-dependent ratcheting of 35CrMo structural steel at elevated temperature considering stress rates [J]. Mater. High Temp., 2016, 34: 172
[29] Peng J, Zhou C Y, Dai Q, et al. Fatigue and ratcheting behaviors of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2014, A590: 329
[30] Li H, Wen M J, Chen G, et al. Constitutive modeling for the anisotropic uniaxial ratcheting behavior of Zircaloy-4 alloy at room temperature [J]. J. Nucl. Mater., 2013, 443: 152
[31] Kang G Z, Liu Y J. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature [J]. Mater. Sci. Eng., 2008, A472: 258
[32] Dutta K, Ray K K. Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy [J]. Mater. Sci. Eng., 2012, A540: 30
[33] Kang G Z, Dong Y W, Wang H, et al. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation [J]. Mater. Sci. Eng., 2010, A527: 5952
[34] Dutta K, Kishor R, Sahu L, et al. On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A660: 47
[35] Gaudin C, Feaugas X. Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses [J]. Acta Mater., 2004, 52: 3097
[36] Shao C W, Shi F, Li X W. Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A667: 208
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[14] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.