Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 741-750    DOI: 10.11900/0412.1961.2018.00460
  本期目录 | 过刊浏览 |
α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响
黄森森1,2,马英杰1(),张仕林1,齐敏1,雷家峰1,宗亚平2,杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学材料科学与工程学院 沈阳 110819
Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy
Sensen HUANG1,2,Yingjie MA1(),Shilin ZHANG1,Min QI1,Jiafeng LEI1,Yaping ZONG2,Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
Sensen HUANG, Yingjie MA, Shilin ZHANG, Min QI, Jiafeng LEI, Yaping ZONG, Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. Acta Metall Sin, 2019, 55(6): 741-750.

全文: PDF(22782 KB)   HTML
摘要: 

研究了两相区固溶温度及固溶后冷速对Ti-6Al-4V (TC4)合金元素再分配行为的影响,利用EPMA技术表征了初生α相(αp)以及β转变区域(βt)的元素浓度,考察了βt显微组织尺寸随固溶温度及元素浓度的变化。结果表明:随着固溶温度升高,βt区域元素浓度变化显著,表现为Al含量升高、V含量降低,而αp晶粒中元素浓度变化较小,导致两区域元素浓度差异减小;同一固溶温度下,以不同冷却方式(水冷、空冷及炉冷)冷却的显微组织及元素分布显示,冷却速率越低,αp比例越高,αpβt之间元素浓度差异越明显。合金经固溶水冷、空冷后,βt分别为淬火马氏体、次生α相(αs)+残余β相,2种冷速下βt的显微组织尺寸均与高温β相内的元素浓度水平有关,即βt内部显微组织尺寸受固溶温度的显著影响。利用纳米压痕技术表征了不同固溶温度下微区域(αpβt)的力学特征,结果表明,密排六方(hcp)晶格αp本身呈现的力学行为的各向异性对其纳米压痕性能起决定性作用,而βt的弹性模量及硬度主要受αs片层尺寸的影响。最后讨论了“固溶温度-微区元素浓度-微区显微组织-微区力学性能”之间的关系。

关键词 α+β钛合金元素再分配显微组织纳米压痕    
Abstract

During the thermal treatments of α+β titanium alloys in (α+β) phase field, alloying element partitioning effect takes place accompanying with the α?β transformation, which results in the segregation of α stabilizing elements (Al, O) and β stabilizing elements (V, Mo, etc.) into the corresponding phases respectively. The element partitioning effect will further affect the microstructure characteristics (phase constitution, microstructure size), plastic deformation modes and the final mechanical properties of the alloy. In this work, the influences of solution temperature and cooling rate on the element partitioning behavior during solution process of Ti-6Al-4V alloy in (α+β) phase field were investigated. The element concentrations in primary α phase (αp) and β transformed region (βt) were characterized by EPMA technique. The microstructural variation of βt with respect to solution temperature was analyzed. It was found that βt showed an obvious increase of Al content and decrease of V content with the increasing of solution temperature, while the αp exhibited less noticeable change, which led to the reduction of concentration difference between the two phases. Under the same solution temperature, the microstructures and element distributions at different cooling rates (water quenching, air cooling, furnace cooling) were exhibited. The slow cooling processing especially furnace cooling would induce higher volume fraction of αp phase and more pronounced element partitioning. The microstructural characteristics of βt cooled from different solution temperatures were further analyzed. During the water or air cooling process, the transformations of β→matensite/αs happened, and the sizes of martensite or αs were postulated to be dependent on the element concentration of β phase. The properties of local microstructure (αp, βt) were further measured by nanoindentation. It indicates that the intrinsically anisotropic character of the hexagonal crystal structure (hcp) of the αp phase has decisive consequences for the properties, while the elastic modulus and hardness of βt calculated by nanoindentation are mainly dominated by the width of αs lamellas. On the basis of the above results, the relationship between solution temperature, element concentration of local microstructure, microstructure size and mechanical properties of local microstructure was finally discussed.

Key wordsα+β titanium alloy    alloying element partitioning    microstructure    nanoindentation
收稿日期: 2018-10-08     
ZTFLH:  TG146  
基金资助:中国科学院B类先导专项项目(No.XDB06050100);国家重点研发计划项目(Nos.2016YFC0304201);国家重点研发计划项目(2016YFC0304206);国家自然科学基金项目(No.51871225)
作者简介: 黄森森,男,1990年生,博士生
图1  TC4合金原始组织及其中Al、V元素的面分布
图2  经960 ℃固溶水冷处理后,TC4合金的显微组织及Al、V元素浓度的线分布(沿中心线)
图3  不同两相区温度固溶后水冷条件下,TC4合金αp及βt的元素(Al、V)定量分析
图4  TC4合金经880 ℃固溶并以不同方式冷却后的显微组织及Al、V元素浓度分布
图5  TC4合金经880 ℃固溶并以不同方式冷却后的元素浓度定量分析
图6  TC4合金经不同温度固溶水淬后的显微组织及αp和βt的体积分数变化
图7  TC4合金原始组织及不同温度固溶水淬条件下的XRD谱
图8  TC4合金经不同温度固溶水淬后βt内淬火马氏体形貌
图9  TC4合金经不同温度固溶空冷后βt区域内αs片层显微组织
图10  原始态TC4合金中αp的纳米压痕性能随晶体取向的变化
图11  两相区固溶后空冷条件下,TC4合金βt的纳米压痕性能随固溶温度的变化
[1] Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136
[2] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
[3] Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys [J]. Mater. Sci. Eng., 1999, A263: 117
[4] Zhang Z Q, Dong L M, Yang Y, et al. Influences of quenching temperature on the microstructure and deformation behaviors of TC16 titanium alloy [J]. Acta Metall. Sin., 2011, 47: 1257
[4] (张志强, 董利民, 杨 洋等. 淬火温度对TC16钛合金显微组织及变形行为的影响 [J]. 金属学报, 2011, 47: 1257)
[5] Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 211
[6] Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α-β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating [J]. J. Alloys Compd., 2015, 626: 330
[7] Bruneseaux F, Aeby-Gautier E, Geandier G, et al. In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction [J]. Mater. Sci. Eng., 2008, A476: 60
[8] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V [J]. Metall. Mater. Trans., 2003, 34A: 2377
[9] Popov A A, Illarionov A G, Stepanov S I, et al. Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition [J]. Phys. Met. Metallogr., 2014, 115: 507
[10] Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si alloy [J]. Chin. J. Nonferrous Met., 2010, 20(suppl.): 565
[10] (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊):565)
[11] Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782
[12] Fitzner A, Prakash D G L, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
[13] Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
[14] Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
[15] Chen Q, Ma N, Wu K S, et al. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V [J]. Scr. Mater., 2004, 50: 471
[16] Gao X X, Zeng W D, Zhang S F, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
[17] Elmer J W, Palmer T A, Babu S S, et al. Phase transformation dynamics during welding of Ti-6Al-4V [J]. J. Appl. Phys., 2004, 95: 8327
[18] Elmer J W, Palmer T A, Babu S S, et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V [J]. Mater. Sci. Eng., 2005, A391: 104
[19] Zhang Z, Wang Q J, Mo W. Metallurgy and Heat Treatment of Titanium Alloys [M]. Beijing: Metallurgical Industry Press, 2009: 7
[19] (张 翥, 王群骄, 莫 畏. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009: 7)
[20] Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589
[21] Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al. Microstructure design and mechanical properties in a near-α Ti-4Mo alloy [J]. Acta Mater., 2015, 97: 291
[22] Davis R, Flower H M, West D R F. Martensitic transformations in Ti-Mo alloys [J]. J. Mater. Sci., 1979, 14: 712
[23] Srivastava D, Madangopal K, Banerjee S, et al. Self accomodation morphology of martensite variants in Zr2.5-wt%Nb alloy [J]. Acta Metall. Mater., 1993, 41: 3445
[24] Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095
[25] Peng C, Zhang S Y, Ren L, et al. Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy [J]. Acta Metall. Sin., 2017, 53: 1377
[25] (彭 聪, 张书源, 任 玲等. 冷却速率对含Cu钛合金显微组织和性能的影响 [J]. 金属学报, 2017, 53: 1377)
[26] Rugg D, Britton T B, Gong J, et al. In-service materials support for safety critical applications—A case study of a high strength Ti-alloy using advanced experimental and modelling techniques [J]. Mater. Sci. Eng., 2014, A599: 166
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.