Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 238-248    DOI: 10.11900/0412.1961.2018.00121
  本期目录 | 过刊浏览 |
γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究
操发春1,2, 吴航3(), 杨延格1,4(), 曹京宜4, 张涛1,3, 王福会3
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 东北大学材料科学与工程学院 沈阳 110819
4 海军涂料分析检测中心 北京 102442
Study on Chemical Bonding Between Epoxy Coating and Metal Substrate Using γ-Aminopropyltrimethoxysilaneto Modify Epoxy Resin Molecule
Fachun CAO1,2, Hang WU3(), Yange YANG1,4(), Jingyi CAO4, Tao ZHANG1,3, Fuhui WANG3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4 Navy Coating Analysis and Test Center, Beijing 102442, China
引用本文:

操发春, 吴航, 杨延格, 曹京宜, 张涛, 王福会. γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究[J]. 金属学报, 2019, 55(2): 238-248.
Fachun CAO, Hang WU, Yange YANG, Jingyi CAO, Tao ZHANG, Fuhui WANG. Study on Chemical Bonding Between Epoxy Coating and Metal Substrate Using γ-Aminopropyltrimethoxysilaneto Modify Epoxy Resin Molecule[J]. Acta Metall Sin, 2019, 55(2): 238-248.

全文: PDF(7978 KB)   HTML
摘要: 

利用γ-氨基丙基三甲氧基硅烷(γ-APS)对环氧树脂分子进行改性合成了具有键合特性的活性树脂(γ-APS/EP),将活性树脂作为液态添加剂加入到环氧涂层中,利用活性树脂与金属表面羟基反应生成耐水解的噁烷键的特点,实现了环氧涂层/金属界面的化学键合。研究表明,活性树脂添加量为3% (质量分数)时,环氧涂层与金属基体的界面结合力和对腐蚀介质的抗渗透性能达到最佳。根据活性树脂含量的影响,提出了活性树脂在环氧涂层/金属界面的键合机理。

关键词 环氧涂层γ-氨基丙基三甲氧基硅烷;化学键合    
Abstract

Epoxy coatings are widely used to protect metals from corrosion in ocean engineering and process industries. It has been proved that the adhesion between epoxy coating and metal is a key factor that affects their service life of the coating. However, interface between epoxy coating and metal substrate is usually combined by weak van der Waals force or secondary bond, which limits the protective performance of coatings. This work aims to translate the interface state from the physical adsorption to chemical bonding so as to increase the service life of epoxy coating. A kind of reactive resin γ-APS/EP with hydrolysis characteristic was prepared using γ-aminopropyltrimethoxysilane (γ-APS), and used as a coating filler with different contents of 0.5%~10%. Both dry and wet adhesion strength of epoxy coatings with different contents of γ-APS/EP were examined, the resistance to aggressive medium of epoxy varied with the contents of γ-APS/EP was evaluated by water absorption measurement, and the structure and composition of the coating/metal systems were characterized by using SEM, XPS, DSC and FTIR. The results showed that amino groups in γ-APS/EP disappeared and methoxysilyl groups (Si—O—CH3) were remained after the synthesis process. Adhesion strength of the epoxy coating with metal substrate was significantly enhanced by introducing γ-APS/EP. Moreover, the dry adhesion strength of epoxy coating with 3%γ-APS/EP reached the maximum value of 12.4 MPa, which was twice the strength of pure epoxy, and was decreased with the content of γ-APS/EP further increasing. Meanwhile, wet interface adhesion strength of epoxy coating with 3%γ-APS/EP was still kept about 7.4 MPa after 900 h immersion in 3.5%NaCl, more than three times of pure epoxy coating. And also, epoxy coating with 3%γ-APS/EP showed the best performance with lower saturated water absorption. The chemical bonding can be obtained by the generation of oxane on the interface resulting from the reaction between the synthesized reactive resin and the hydroxyl on the metal surface after the reactive resin was added in the epoxy resin. Furthermore, the content of γ-APS/EP affected the number of chemical bonds at the interface, the hydrophilicity and the bulk density of coating. Finally, an interfacial chemical bonding mechanism was proposed.

Key wordsepoxy coating    γ-aminopropyltrimethoxysilane;    chemical bonding
收稿日期: 2018-03-30     
ZTFLH:  TQ632.4  
基金资助:资助项目 国家自然科学基金项目No.51401217和中国博士后科学基金项目No.2017M613383
作者简介:

作者简介 操发春,男,1994年生,硕士生

图1  环氧树脂E51、硅烷KH540和活性树脂γ-APS/EP的FTIR谱
图2  活性树脂的合成反应机理示意图
图3  涂层干态附着力和剥离率随活性树脂含量的变化
图4  附着力测试后断口金属裸露区域背散射模式下的SEM像
图5  清漆和3%γ-APS/EP涂层试样附着力测试后金属裸露处的XPS谱
Peak Bond Pure epoxy 3%γ-APS/EP
Binding energy FWHM Binding energy FWHM
O1s Si—O/C—O[6,13] 529.772 1.051 529.825 1.237
—OH[6] 531.285 1.557 531.369 1.644
Fe2O3[20] 532.728 1.836 532.855 1.544
Si2p 1/2 Si—O[13] 101.220 2.063
Si2p 3/2 102.090 2.192
表1  元素结合能和半峰宽
图6  清漆、3%γ-APS/EP和10%γ-APS/EP涂层的湿态附着力随浸泡时间的变化
图7  Q235钢试样经900 h浸泡湿态附着力测试后的形貌
图8  涂层试样的吸水动力学曲线
Mass fraction of
γ-APS/EP / %
Water absorption / % Saturated time / h Decline time / h
11 h 70.08 h 106 h 346 h 936 h
0 0.3537 0.5715 0.5567 0.7067 0.6582 309 -
3 0.2925 0.5328 0.5788 0.6266 0.4737 106 406.5
10 0.3553 0.6587 0.6888 0.6479 0.3701 70.08 346.5
表2  涂层在不同浸泡时间的吸水率
图9  涂层DSC热流-温度曲线及玻璃化转变温度(Tg)
图10  清漆、3%γ-APS/EP和10%γ-APS/EP涂层浸泡900 h前后纵截面SEM像
图11  10%γ-APS/EP涂层纵截面EDS结果
图12  10% g-APS/EP涂层纵截面形貌及对应EDS面分析结果
图13  活性树脂的作用机理示意图
[1] Wicks Z W, Jones F N, Pappas S P, translated by Jing F L, Jiang Y T et al. Organic Coatings: Science and Technology [M]. Beijing: Chemical Industry Press, 2002: 1(Wicks Z W, Jones F N, Pappas S P著, 经桴良, 姜英涛等译. 有机涂料: 科学与技术 [M]. 北京: 化学工业出版社, 2002: 1)
[2] Koehler E L.The mechanism of cathodic disbondment of protective organic coatings-aqueous displacement at elevated pH[J]. Corrosion, 1984, 40: 5
[3] Sorensen P A, Dam-Johansen K, Weinell C E, et al.Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate[J]. Prog. Org. Coat., 2010, 68: 283
[4] Sorensen P A, Kill S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135
[5] Plueddemann E P.Silane Coupling Agents[M]. 2nd Ed., New York: Springer, 1991: 1
[6] Harun M K, Lyon S B, Marsh J.A surface analytical study of functionalised mild steel for adhesion promotion of organic coatings[J]. Prog. Org. Coat., 2003, 46: 21
[7] Lu X Y, Zuo Y, Zhao X H, et al.The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment[J]. Corros. Sci., 2012, 60: 165
[8] Ramrus D A, Berg J C.Using heterogeneous silane patterns to maintain adhesion and decrease water penetration into epoxy/aluminum interfaces[J]. J. Adhes. Sci. Technol., 2006, 20: 1615
[9] van Ooij W J, Child T. Protecting metal with silane coupling agents[J]. Chemtech, 1998, 28: 26
[10] van Ooij W J, Zhu D Q, Prasad G, et al. Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding[J]. Surf. Eng., 2000, 16: 386
[11] Wang P, Schaefer D W.Why does silane enhance the protective properties of epoxy films?[J]. Langmuir, 2008, 24: 13496
[12] Petrunin M A, Nazarov A P, Mikhailovski Y N.Formation mechanism and anticorrosive properties of thin siloxane films on metal surfaces[J]. J. Electrochem. Soc., 1996, 143: 251
[13] Subramanian V, van Ooij W J. Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes[J]. Corrosion, 1998, 54: 204
[14] van Ooij W J, Sabata A. Characterization of films of organofunctional silanes by TOFSIMS and XPS[J]. J. Adhes. Sci. Technol., 1991, 5: 843
[15] Ellison M D, Gasda P J.Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction[J]. J. Phys. Chem., 2008, 112C: 738
[16] Yang H F, Li F H, Shan C S, et al.Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J. Mater. Chem., 2009, 19: 4632
[17] Sun W, Wang L D, Wu T T, et al.Inhibiting the corrosion-promotion activity of graphene[J]. Chem. Mater., 2015, 27: 2367
[18] Ji W G, Hu J M, Liu L, et al.Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers[J]. Surf. Coat. Technol., 2007, 201: 4789
[19] Tian W L.Study on the failure mechanisms and lifetime prediction of organic coatings under deep sea environments [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2015(田文亮. 深海交变压力环境下有机涂层的失效机制及寿命预测方法研究 [D]. 沈阳: 中国科学院金属研究所, 2015)
[20] Uekawa N, Fukuda S, Kakegawa K, et al.Effects of surface modification of α-FeOOH powder on the sintering process of ferrite compacts[J]. Phys. Chem. Chem. Phys., 2001, 3: 5596
[21] Ji W G, Hu J M, Zhang J Q, et al.Reducing the water absorption in epoxy coatings by silane monomer incorporation[J]. Corros. Sci., 2006, 48: 3731
[22] Yang L X, Feng J, Zhang W G, et al.Experimental and computational study on hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane (γ-GPS)[J]. Appl. Surf. Sci., 2010, 257: 990
[23] Yang L X, Liu M X, Lei X L, et al.Study on the adsorption behavior of γ-GPS on low carbon steel surfaces using RA-IR, EIS and AFM[J]. Appl. Surf. Sci., 2011, 257: 9895
[24] Zhu D Q, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: Mechanism for corrosion protection[J]. Corros. Sci., 2003, 45: 2177
[25] Vandenberg E T, Bertilsson L, Liedberg B, et al.Structure of 3-aminopropyl triethoxy silane on silicon oxide[J]. J. Colloid Interface Sci., 1991, 147: 103
[26] van Ooij W J, Zhu D, Stacy M, et al. Corrosion protection properties of organofunctional silanes—An overview[J]. Tsinghua Sci. Technol., 2005, 10: 639
[1] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[2] 张金涛; 胡吉明; 张鉴清 . 环氧涂层金属体系的串联双槽电化学阻抗谱分析[J]. 金属学报, 2006, 42(8): 857-860 .
[3] 张金涛; 胡吉明; 张鉴清; 曹楚南 . LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为[J]. 金属学报, 2006, 42(5): 528-532 .
[4] 谢德明; 童少平; 胡吉明; 郑奕; 王建明; 张鉴清 . 多道富锌基涂层在NaCl溶液中的电化学行为研究[J]. 金属学报, 2004, 40(7): 749-753 .
[5] 胡吉明; 张鉴清; 张金涛 . LY12铝合金环氧涂层在NaCl溶液中的吸水与失效[J]. 金属学报, 2003, 39(9): 955-961 .
[6] 胡吉明; 张鉴清; 曹楚南 . 铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究[J]. 金属学报, 2003, 39(5): 544-549 .