Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 341-348    DOI: 10.11900/0412.1961.2018.00131
  本期目录 | 过刊浏览 |
G20Mn5N铸钢件微细观孔洞三维特征及形态演化
闫华东,靳慧()
东南大学土木工程学院江苏省工程力学分析重点实验室 南京 211189
Three-Dimensional Characteristics and Morphological Evolution of Micro/Meso Pores inG20Mn5N Steel Castings
Huadong YAN,Hui JIN()
Jiangsu Key Laboratory of Engineering Mechanics, Department of Civil Engineering, Southeast University, Nanjing 211189, China
引用本文:

闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
Huadong YAN, Hui JIN. Three-Dimensional Characteristics and Morphological Evolution of Micro/Meso Pores inG20Mn5N Steel Castings[J]. Acta Metall Sin, 2019, 55(3): 341-348.

全文: PDF(9858 KB)   HTML
摘要: 

基于高分辨率X射线三维成像技术,研究G20Mn5N低合金铸钢件中的初始微细观孔洞,对气孔、气缩孔和缩孔3类孔洞的数量、大小及圆整度等参数进行统计分析。此外,研究分析了G20Mn5N低合金铸钢件内部微细观孔洞在单调拉伸载荷作用下的演化行为。结果表明,G20Mn5N低合金铸钢中气孔的数量最多、形状最规则、体积最小;缩孔的数量最少,但体积最大、形状最复杂;气缩孔的数量、形状复杂程度和大小均介于气孔和缩孔之间。拉伸载荷作用下,微细观孔洞演化机制包括原有孔洞体积的增长、新孔洞的产生以及孔洞之间的聚合。使用统计方法进一步分析了微细观孔洞的形核和增长规律,结果表明,考虑材料初始孔洞密度和形核应变的指数函数能精确地拟合孔洞形核行为,孔洞平均半径的大小和增长速率不仅受孔洞体积增长的影响,还与孔洞形核有关。

关键词 铸钢微细观孔洞形态演化X射线三维成像    
Abstract

Cast steel is an important metal material that is widely used in civil engineering due to its strength and ductility. However, a variety of casting defects such as micro/meso pores are usually present in the as-cast components and can lead to the degradation of mechanical properties. In this work, the initial micro/meso pores in the G20Mn5N low-alloy cast steel were investigated based on high resolution 3D X-ray tomography technology. Based on their formation mechanism and characteristics, pores were classified into gas, gas-shrinkage and shrinkage pores, and the parameters such as the number, size and sphericity of three types of pores have been counted and analyzed. Then the evolutionary behavior of micro/meso pores in G20Mn5N low-alloy cast steel specimens under monotonic tensile loading has also been studied. The results showed that the volume of gas pore was small and its sphericity coefficients were high. Compared with the gas pore, the shrinkage pore had large volume and more complex shape in space. The volume and sphericity coefficients of gas-shrinkage pore were between the gas pore and the shrinkage. Damage evolution to metallic materials can be divided into void nucleation, growth and coalescence. The void nucleation and growth law were investigated by statistical analysis, which showed that the evolution of the void density could be modeled by an empirical function, and the evolution of void average radius was not only related to void growth but also affected by void nucleation.

Key wordscast steel    micro/meso pore    morphological evolution    3D X-ray tomography
收稿日期: 2018-04-11     
ZTFLH:  TG142.3  
基金资助:国家重点研发计划项目(2017YFC0805100);国家自然科学基金项目(51578137);江苏省工程力学分析重点实验室开放课题项目;江苏省高校优势学科建设工程项目
作者简介: 闫华东,女,1990年生,博士生
图1  缺口试样的形状和尺寸
图2  缺口试样的平均载荷-位移曲线及加载、卸载路径示意图
图3  试样标距段孔洞的X射线三维成像结果
SpecimenPore typeNumberVoxelSurface area / mm2Sphericity
No.Max.Min.MeanMax.Min.MeanMax.Min.Mean
4Gas pore981592050.660.080.020.030.700.510.56
Gas-shrinkage pore846782489.740.230.020.050.500.410.47
Shrinkage pore873152121676.252.120.140.550.380.240.34
5Gas pore865402059.620.150.040.040.640.510.55
Gas-shrinkage pore884542076.410.190.020.050.500.400.47
Shrinkage pore1077938289.900.320.040.150.390.330.37
6Gas pore1022102052.040.090.020.030.660.510.55
Gas-shrinkage pore8762220115.610.230.020.070.500.410.46
Shrinkage pore375137341.000.390.040.190.390.280.35
7Gas pore681862051.490.080.020.030.650.510.54
Gas-shrinkage pore724242084.180.180.020.050.500.400.45
Shrinkage pore111280224682.090.560.120.300.390.280.34
表1  试样4~7中初始气孔、气缩孔和缩孔的特征数据
图4  G20Mn5N铸钢中典型微细观孔洞的形貌及特征
图5  轴向拉伸载荷作用下试样4中孔洞密度(N)的测量值及形核公式拟合曲线
图6  轴向拉伸载荷作用下试样4标距段内不同数量孔洞的平均半径(Rarv)演化规律
图7  在轴向拉伸载荷作用下试样4标距段的二维扫描投影图
图8  轴向拉伸载荷作用下试样4标距段孔洞的X射线三维成像结果
图9  试样4的断口形貌的SEM像
[1] Bao W, Xing L T, Qiu J H. The use of cast steel in steel structure [J]. Adv. Mater. Res., 2011, 183-185: 1918
[2] Chen Y Y, Zhao X Z, Tong L W. Research and application of connections of structural steel casting [J]. Adv. Struct. Eng., 2010, 13: 441
[3] Lee P D, Hunt J D. Hydrogen porosity in directionally solidified aluminium-copper alloys: A mathematical model [J]. Acta Mater., 2001, 49: 1383
[4] Blair M, Monroe R, Beckermann C, et al. Predicting the occurrence and effects of defects in castings [J]. JOM, 2005, 57(5): 29
[5] Liu C Y, Wu X, Wu N, et al. Structural damage identification based on rough sets and artificial neural network [J]. Sci. World J., 2014, 2014: 193284
[6] Sigl K M, Hardin R A, Stephens R I, et al. Fatigue of 8630 cast steel in the presence of porosity [J]. Int. J. Cast Met. Res., 2004, 17: 130
[7] Hardin R A, Beckermann C. Prediction of the fatigue life of cast steel containing shrinkage porosity [J]. Metall. Mater. Trans., 2009, 40A: 581.
[8] Hardin R A, Beckermann C. Effect of porosity on deformation, damage, and fracture of cast steel [J]. Metall. Mater. Trans., 2013, 44A: 5316
[9] Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
[9] 王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
[10] Wan Q, Zhao H D, Zou C. Three-dimensional characterization and distribution of micropores in aluminum alloy high pressure die castings [J]. Acta Metall. Sin., 2013, 49: 284
[10] 万 谦, 赵海东, 邹 纯. 铝合金压铸件微观孔洞三维特征及分布的研究 [J]. 金属学报, 2013, 49: 284
[11] Yu C, Wu S C, Hu Y N, et al. Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography [J]. Acta Metall. Sin., 2015, 51: 159
[11] 喻 程, 吴圣川, 胡雅楠等. 铝合金熔焊微气孔的三维同步辐射X射线成像 [J]. 金属学报, 2015, 51: 159
[12] Maire E. X-ray tomography applied to the characterization of highly porous materials [J]. Annu. Rev. Mater. Res., 2012, 42: 163
[13] Cao T S, Maire E, Verdu C, et al. Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests-application to the identification of a shear modified GTN model [J]. Comput. Mater. Sci., 2014, 84: 175
[14] Lee S G, Gokhale A M, Patel G R, et al. Effect of process parameters on porosity distributions in high-pressure die-cast AM50 Mg-alloy [J]. Mater. Sci. Eng., 2006, A427: 99
[15] Zió?kowski G, Chlebus E, Szymczyk P, et al. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology [J]. Arch. Civ. Mech. Eng., 2014, 14: 608
[16] Balasundaram A, Gokhale A M. Quantitative characterization of spatial arrangement of shrinkage and gas (air) pores in cast magnesium alloys [J]. Mater. Charact., 2001, 46: 419
[17] Fansi J, Balan T, Lemoine X, et al. Numerical investigation and experimental validation of physically based advanced GTN model for DP steels [J]. Mater. Sci. Eng., 2013, A569: 1
[18] Russell K C. The theory of void nucleation in metals [J]. Acta Metall., 1978, 26: 1615
[19] Bieler T R, Crimp M A, Yang Y, et al. Strain heterogeneity and damage nucleation at grain boundaries during monotonic deformation in commercial purity titanium [J]. JOM, 2009, 61(12): 45
[20] Landron C, Bouaziz O, Maire E, et al. Characterization and modeling of void nucleation by interface decohesion in dual phase steels [J]. Scr. Mater., 2010, 63: 973
[21] Bouaziz O, Maire E, Giton M, et al. A model for initiation and growth of damage in dualphase steels identified by X-ray micro-tomography [J]. Metall. Res. Technol., 2008, 105: 102
[22] Maire E, Bouaziz O, Di Michiel M, et al. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography [J]. Acta Mater., 2008, 56: 4954
[23] Chu C C, Needleman A. Void nucleation effects in biaxially stretched sheets [J]. J. Eng. Mater. Technol., 1980, 102: 249
[24] Zhao C F. Analysis method and application of multi-scale damage evolution of weld specimen with meso-defects [D]. Nanjing: Southeast University, 2016
[24] 赵超凡. 含细观缺陷的焊接构件损伤跨尺度演化分析方法及其应用 [D]. 南京: 东南大学, 2016
[25] Zhong Q P, Zhao Z H, Zhang Z. Development of "fractography" and research of fracture micromechanism [J]. J. Mech. Strength, 2005, 27: 358
[25] 钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究 [J]. 机械强度, 2005, 27: 358
[26] Wang H. Evolution of microvoid and inclusion in metal materials [D]. Shanghai: Shanghai Jiao Tong University, 2005
[26] 王 华. 金属中微孔洞和夹杂的演变 [D]. 上海: 上海交通大学, 2005
[27] Xin R S, Ma Q X, Li W Q. Microstructure and mechanical properties of internal crack healing in a low carbon steel [J]. Mater. Sci. Eng., 2016, A662: 65
[28] Hu Z, Zhang Y, Teng H, et al. Research progress and prospect of crack healing in metal material [J]. Mater. Rev., 2014, 28(17): 47
[28] 胡 喆, 张 勇, 滕 辉等. 金属材料裂纹愈合的研究进展与展望 [J]. 材料导报, 2014, 28(17): 47)
[1] 张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53(9): 1025-1037.
[2] 张银辉,LIMei,GODLEWSKILarryA,ZINDELJacobW,冯强. N对汽车发动机用新型奥氏体耐热铸钢1000 ℃蠕变性能的影响*[J]. 金属学报, 2016, 52(6): 661-671.
[3] 康进武 聂刚 喻海良 龙海敏 郝小坤 黄天佑 胡永沂. 热处理过程大型铸钢件变形的三维动态测量[J]. 金属学报, 2011, 47(5): 535-539.
[4] 苏斌 韩志强 赵永让 沈丙振 张连振 柳百成. ASTM A216 WCA铸钢凝固及冷却过程相变的CA模拟[J]. 金属学报, 2011, 47(11): 1388-1395.
[5] 杨玉娟 严彪. CBr4-C2Cl6共晶合金生长的三维多相场模拟 I. 模型建立及验证[J]. 金属学报, 2010, 46(7): 781-786.
[6] 杨玉娟 严彪. CBr4-C2Cl6共晶合金生长的三维多相场模拟
II.层片间距对形态演化的影响
[J]. 金属学报, 2010, 46(7): 787-793.
[7] 陈祥; 李言祥 . 高硅铸钢残余奥氏体分布形态及其对力学性能的影响[J]. 金属学报, 2007, 43(3): 235-239 .
[8] 徐平光; 奂永慧; 殷福星; 长井寿 . 低碳钢带铸材的微观组织与塑性异向性[J]. 金属学报, 2006, 42(1): 6-13 .
[9] 陈祥; 李言祥; 符寒光 . 等温淬火高硅铸钢的断裂韧性[J]. 金属学报, 2005, 41(10): 1061-1065 .
[10] 崔向红; 王树奇; 姜启川; 洪扁 . 4Cr3Mo2NiV铸造热锻模具钢的高温磨损机理[J]. 金属学报, 2005, 41(10): 1116-1120 .
[11] 李德富;林柏年;阎永贵;安阁英. 铸钢流变性能的实验研究[J]. 金属学报, 1995, 31(21): 389-393.
[12] 林家骝;朱世根;于震宗. 铸钢在凝固区的流变行为[J]. 金属学报, 1991, 27(5): 110-115.
[13] 张伟;李隆盛;程骥. 稀土对Ni9铸钢晶界裂纹倾向的影响[J]. 金属学报, 1990, 26(2): 79-82.
[14] 陈肇友;田守信. Al与Si添加剂对Al_2O_3-C材料抗保护渣侵蚀的影响[J]. 金属学报, 1989, 25(3): 125-129.
[15] 姜锡山;宫延生;张贵昌. 铸钢中(Mn,Fe)S单晶生长形态的研究[J]. 金属学报, 1988, 24(4): 295-298.