Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 181-190    DOI: 10.11900/0412.1961.2018.00187
  本期目录 | 过刊浏览 |
轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响
顾晨, 杨平(), 毛卫民
北京科技大学材料科学与工程学院 北京 100083
The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing
Chen GU, Ping YANG(), Weimin MAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. Acta Metall Sin, 2019, 55(2): 181-190.

全文: PDF(6361 KB)   HTML
摘要: 

将低牌号无取向电工钢的原始铸坯采用不同的工艺轧制得到5组样品,在H2气氛下进行相变退火处理,使其发生αγα相变,采用EBSD、XRD和磁性能测量技术确定了不同轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响。结果表明,与常规再结晶退火处理相比,相变退火处理可显著粗化晶粒降低成品板铁损;相变过程中存在织构遗传现象,相比于热轧-冷轧工艺,直接冷轧工艺相变退火后更有利于获得{100}织构,并显著改善成品板的磁性能;低温热轧比高温热轧能保留更多的{100}取向晶粒,相变退火后成品板中的非{111}取向晶粒增多,并提高了成品板的磁性能;此外,工业板中P和Al元素的偏聚或氧化对相变退火后成品板的组织、织构与磁性能有不利影响。

关键词 无取向电工钢轧制工艺织构遗传相变化学元素    
Abstract

Non-oriented electrical steel sheets are important metallic functional materials for the iron cores in transformers and electrical motors, which require the performance characteristics of low iron loss and high magnetic induction. The magnetic properties of electrical steel critically depend on the microstructure and the occurring texture components. In addition, alloy elements can affect the magnetic properties by altering the electrical resistivity, microstructure and texture. At present, the quality of commercial non-oriented electrical steels are mainly optimized by the control of deformation, recrystallization parameters and chemical composition. And the microstructure, texture and magnetic properties are significantly influenced by the rolling process before recrystallization annealing. The favorite {100} texture in such condition takes at maximum only about 20% in volume fraction. In contrast, phase transformation combined with deformation can lead to nearly 80% volume fraction of {100}-oriented grains. In this work, the influence of rolling process on the microstructure, texture and magnetic properties of low grades non-oriented electrical steel after phase transformation annealing was studied by means of EBSD, XRD and magnetism measuring techniques. The starting material is a columnar-grained industrial low grades electrical steel cast slab. Five different initial microstructures are obtained after different rolling processes, the αγα phase transformation annealing of samples is conducted in a tube furnace under H2 atmosphere. The results show that phase transformation annealing can significantly coarsen grains and reduce the iron loss of non-oriented electrical steels compared with traditional recrystallization annealing. And the phase transformation texture is influenced by texture memory. Compared with hot rolling-cold rolling process, more {100}-oriented grains are obtained and the magnetic properties of non-oriented electrical steels are improved significantly after phase transformation in the directly cold rolling process. The proportion of non-{111} oriented grains increases and more initial {100}-oriented grains are retained after phase transformation in the process with lower hot rolling temperature, which improve the magnetic properties of final sample. In addition, the presence of P and Al elements in commercial electrical steels may affect the microstructure, texture and magnetic properties of non-oriented electrical steels due to segregation and oxidation after phase transformation.

Key wordsnon-oriented electrical steel    rolling process    texture memory    phase transformation    chemical element
收稿日期: 2018-05-10     
ZTFLH:  TG111  
基金资助:资助项目 国家自然科学基金项目No.51771024
作者简介:

作者简介 顾 晨,女,1993年生,硕士生

Processing route Hot rolling Cold rolling
A Holding at 1150 ℃ for 30 min, hot rolling by 3 passes and air cooling, 2 mm thickness in hot band, 80% rolling reduction Cold rolling to 0.35 mm (82.5%)
B
Holding at 1150 ℃ for 30 min, hot rolling to 4 mm, then reheating at 1150 ℃ for 5 min followed by 2 passes to 2 mm thickness, air cooling, 50% rolling reduction Cold rolling to 0.35 mm (82.5%)
C The same as route A except heating at 1100 ℃, air cooling, 80% rolling reduction, 2 mm thickness Cold rolling to 0.35 mm (82.5%)
D The same as route C, water cooling Cold rolling to 0.35 mm (82.5%)
E - Direct cold rolling to 0.35 mm (82.5%)
表1  相变退火前的轧制工艺
图1  原始铸坯的宏观组织与EBSD数据
图2  1300牌号工业退火板的EBSD数据
图3  不同热轧工艺下的热轧样品EBSD取向成像图及ODF截面图(φ2=45°)
  
图5  不同轧制工艺下的冷轧样品相变退火后的EBSD取向成像图及ODF截面图(φ2=45°)
图6  不同轧制工艺下相变退火后样品的平均晶粒尺寸分布图
图7  不同轧制工艺下相变退火板的磁性能
图8  工艺C下相变退火后样品表面的辉光放电光谱
[1] Hou C K.Effect of silicon on the loss separation and permeability of laminated steels[J]. J. Magn. Magn. Mater., 1996, 162: 280
[2] Ghosh P, Chromik R R, Knight A M, et al.Effect of metallurgical factors on the bulk magnetic properties of non-oriented electrical steels[J]. J. Magn. Magn. Mater., 2014, 356: 42
[3] Li H Z, Liu H T, Liu Z Y, et al.Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel[J]. Mater. Charact., 2014, 88: 1
[4] Sung J K, Lee D N, Wang D H, et al.Efficient generation of cube-on-face crystallographic texture in iron and its alloys[J]. ISIJ Int., 2011, 51: 284
[5] Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100} <0vw> texture[J] J. Appl. Phys., 2013, 113: 17A338-1
[6] Tomida T.A new process to develop (100) texture in silicon steel sheets[J]. J. Mater. Eng. Perform., 1996, 5: 316
[7] Xie L, Yang P, Xia D S, et al.Microstructure and texture evolution in a non-oriented electrical steel during γα transformation under various atmosphere conditions[J]. J. Magn. Magn. Mater., 2015, 374: 655
[8] Xie L, Yang P, Zhang N, et al.Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation[J]. J. Magn. Magn. Mater., 2014, 356: 1
[9] Zhang L W, Yang P, Wang J H, et al.Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel[J]. J. Mater. Sci., 2016, 51: 8087
[10] Zhang L W.Research on the mechanism of {100} transformation texture induced by surface-effect in the electrical steels [D]. Beijing: University of Science and Technology Beijing, 2016(章楼文. 电工钢中表面效应诱发{100}相变织构的机理研究 [D]. 北京: 北京科技大学, 2016)
[11] Fang F, Lu X, Lan M F, et al.Effect of rolling temperature on the microstructure, texture, and magnetic properties of strip-cast grain-oriented 3% Si steel[J]. J. Mater. Sci., 2018, 53: 9217
[12] De Paepe A, Eloot K, Dilewijns J, et al.Effect of hot rolling parameters on the magnetic properties of a low-silicon ultra-low-carbon steel[J]. J. Magn. Magn. Mater., 1996, 160: 129
[13] Sidor J J, Verbeken K, Gomes E, et al.Through process texture evolution and magnetic properties of high Si non-oriented electrical steels[J]. Mater. Charact., 2012, 71: 49
[14] Fischer O,Schneider J.Influence of deformation process on the improvement of non-oriented electrical steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 302
[15] Gutiérrez-Casta?eda E J, Salinas-Rodríguez A. Effect of annealing prior to cold rolling on magnetic and mechanical properties of low carbon non-oriented electrical steels[J]. J. Magn. Magn. Mater., 2011, 323: 2524
[16] Yashiki H, Okamoto A.Effect of hot-band grain size on magnetic properties of non-oriented electrical steels[J]. IEEE Trans. Magn., 1987, 23: 3086
[17] Chang S K, Huang W Y.Effect of normalizing of hot band on magnetic properties and texture in high silicon non-oriented electrical steels[J]. Steel Res. Int., 2007, 78: 340
[18] Zhang N, Yang P, Mao W M.Influence of columnar grains on the cold rolling texture evolution in Fe-3%Si electrical steel[J]. Acta Metall. Sin., 2012, 48: 782(张宁, 杨平, 毛卫民. 柱状晶对Fe-3%Si电工钢冷轧织构演变规律的影响[J]. 金属学报, 2012, 48: 782)
[19] Wang L N, Yang P, Mao W M.Analysis of martensitic transformation during tension of high manganese TRIP steel at high strain rates[J]. Acta Metall. Sin., 2016, 52: 1045(王丽娜, 杨平, 毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析[J]. 金属学报, 2016, 52: 1045)
[20] Zhang L W, Yang P, Mao W M.Phenomena of Σ3 and orientation gradients in an electrical steel applied αγα transformation[J]. Acta Metall. Sin., 2017, 53: 19(章楼文, 杨平, 毛卫民. 电工钢相变组织中的Σ3和取向梯度现象[J]. 金属学报, 2017, 53: 19)
[21] Tomida T, Wakita M, Yasuyama M, et al.Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation[J]. Acta Mater., 2013, 61: 2828
[22] Lischewski I, Gottstein G.Nucleation and variant selection during the α-γ-α phase transformation in microalloyed steel[J]. Acta Mater., 2011, 59: 1530
[23] Yoshinaga N, Inoue H, Kawasaki K, et al.Factors affecting texture memory appearing through αγα transformation in IF steels[J]. Mater. Trans., 2007, 48: 2036
[24] Sung J K, Lee D N.Evolution of crystallographic texture in pure iron and commercial steels by γ to α transformation [J].Mater. Sci. Forum, 2012, 706-709: 2657
[25] Nakayama T, Honjou N.Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet[J]. J. Magn. Magn. Mater., 2000, 213: 87
[26] Hou C K, Hu C T, Lee S.The effect of aluminium on the magnetic properties of lamination steels[J]. IEEE Trans. Magn., 1991, 27: 4305
[27] Park J T, Woo J S, Chang S K.Effect of phosphorus on the magnetic properties of non-oriented electrical steel containing 0.8 wt% silicon[J]. J. Magn. Magn. Mater., 1998, 182: 381
[28] Lee S, De Cooman B C. Effect of phosphorus on the magnetic losses of non-oriented 2% Si steel[J]. ISIJ Int., 2012, 52: 1162
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[9] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[14] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.