Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 229-237    DOI: 10.11900/0412.1961.2018.00293
  本期目录 | 过刊浏览 |
TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究
廖依敏1, 丰敏1, 陈明辉1(), 耿哲2, 刘阳3, 王福会1, 朱圣龙3
1 东北大学沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2苏州工业职业技术学院精密制造工程系 苏州 215104
3 中国科学院金属研究所 沈阳 110016
Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy
Yimin LIAO1, Min FENG1, Minghui CHEN1(), Zhe GENG2, Yang LIU3, Fuhui WANG1, Shenglong ZHU3
1 Shenyang National Key Laboratory for Materials Science, Northeasten University, Shenyang 110819, China
2 Department of Precision Manufacturing Engineering, Suzhou Institute of Industrial Technology, Suzhou 215104, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. Acta Metall Sin, 2019, 55(2): 229-237.

全文: PDF(6448 KB)   HTML
摘要: 

以Ti-45Al-2Mn-2Nb合金为基体,采用多弧离子镀制备NiCrAlY涂层、喷涂-烧结法制备搪瓷基复合涂层,对比研究了2种涂层以及合金基体的热腐蚀行为。热腐蚀实验温度为850 ℃,选用饱和盐溶液溶质成分为75%Na2SO4+25%NaCl (质量分数),涂盐量为1.5~2.5 mg/cm2。研究结果表明,合金基体完全不具备抗热腐蚀能力,表面形成的氧化膜疏松多孔,且极易剥落;NiCrAlY涂层表面生成的保护性Al2O3膜提高了合金的抗热腐蚀能力,然而涂层与基体间严重的互扩散及Al2O3膜与熔盐的碱性溶解使得NiCrAlY涂层逐渐失效,热腐蚀60 h即出现氧化膜的剥落;而搪瓷基复合涂层在熔盐环境中只发生了轻微的物理溶解,具有极高的热稳定性及较低的热腐蚀速率,有效地阻隔了腐蚀性离子的入侵,抗热腐蚀性能优异。

关键词 搪瓷涂层热腐蚀NiCrAlY涂层TiAl合金    
Abstract

TiAl intermetallic alloys have attracted great attention for its potential application in preparing low pressure turbine blades in aircraft engine. However, its poor oxidation and corrosion resistance becomes a challenge at temperatures above 800 ℃, which leads to the developing of protective coatings. Enamel coating is considered as one of the candidates that match the TiAl alloy well, meanwhile provide corrosion protection. Enamel coating has many advantages such as high thermochemical stability, adjustable thermal expansion coefficient and simple preparation process. This study comparatively investigates hot corrosion behavior of the Ti-45Al-2Mn-2Nb alloy, the traditional NiCrAlY coating and the enamel based composite coating in (75%Na2SO4+25%NaCl, mass fraction) melted salt. Results indicate that after 80 h of hot corrosion, the bare alloy has completely destroyed. For the NiCrAlY coating, it protects the underlying alloy well by forming a protective Al2O3 scale initially. However, serious interdiffusion between coating and substrate results in the degeneration of the coating as well as the scale. At the same time, the basic dissolution of Al2O3 film accelerates corrosion. So obvious spallation takes place after 60 h corrosion. The enamel based composite coating shows excellent thermal stability and low corrosion rate. During the whole hot corrosion test, it still retains its original blue glazing color and luster. Furthermore, the enamel coating suppresses the inward diffusion of oxygen and corrosive ions into the alloy substrate, and thus, it protects the TiAl alloy well from corrosion of the molten (75%Na2SO4+25%NaCl, mass fraction) salt.

Key wordsenamel coating    hot corrosion    NiCrAlY coating    TiAl alloy
收稿日期: 2018-07-01     
ZTFLH:  TG174.4  
基金资助:资助项目 国家自然科学基金项目No.51471177和No.51871051,中央高校基本科研业务费专项基金项目No.N160205001,江苏省自然科学基金青年项目No.BK20160353,以及江苏省高校自然科学研究面上项目No.16KJB460032
作者简介:

作者简介 廖依敏,女,1995年生,硕士生

图1  TiAl合金基体、NiCrAlY涂层和搪瓷基复合涂层在850 ℃下的热腐蚀动力学曲线
图2  TiAl合金基体、NiCrAlY涂层和搪瓷基复合涂层在850 ℃下热腐蚀不同时间后的宏观照片
图3  搪瓷基复合涂层850 ℃下的热腐蚀动力学曲线
图4  TiAl合金基体、NiCrAlY涂层和搪瓷基复合涂层制备态及850 ℃下热腐蚀后的XRD谱
图5  TiAl合金基体、NiCrAlY涂层以及搪瓷基复合涂层在850 ℃下分别热腐蚀80 h (基体样品)及180 h (带涂层样品)后的表面微观形貌
Position O Al Si Ti Mn Nb
a 16.65 3.31 28.74 48.01 2.93 0.36
b 62.66 26.32 2.82 7.95 0.25 -
表1  图6f中a和b点EDS分析结果
图6  TiAl合金基体、NiCrAlY涂层以及搪瓷基复合涂层在850 ℃分别热腐蚀80 h (基体样品)及180 h (带涂层样品) 后的截面微观形貌
图7  制备有NiCrAlY涂层及搪瓷基复合涂层的TiAl合金在850 ℃下热腐蚀180 h后的截面成分EDS分析
[1] Kim Y W.Ordered intermetallic alloys, Part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30
[2] Kim K W.Gamma titanium aluminides: Their status and future[J]. JOM, 1995, 47(7): 39
[3] Appel F, Brossmann U, Christoph U, et al.Recent progress in the development of gamma titanium aluminide alloys[J]. Adv. Eng. Mater., 2000, 2: 699
[4] Umakoshi Y, Yamaguchi M, Sakagami T, et al.Oxidation resistance of intermetallic compounds Al3Ti and TiAl[J]. J. Mater. Sci., 1989, 24: 1599
[5] Maki K, Shioda M, Sayashi M, et al.Effect of silicon and niobium on oxidation resistance of TiAl intermetallics[J]. Mater. Sci. Eng., 1992, A153: 591
[6] Yoshihara M, Kim Y W.Oxidation behavior of gamma alloys designed for high temperature applications[J]. Intermetallics, 2005, 13: 952
[7] Li W B.In situ preparation and high temperature corrosion behavior of glass-ceramic composite coating [D]. Shenyang: University of Chinese Academy of Sciences, 2014(李文波. 玻璃陶瓷复合涂层的原位制备方法及高温腐蚀行为研究 [D]. 沈阳: 中国科学院大学, 2014)
[8] Chinese Materials Research Society. Chinese New Material Industry Development Report—Aerospace Materials Album [M]. Beijing: Chemical Industry Press, 2006: 121(中国材料研究学会. 中国新材料产业发展报告——航空航天材料专辑 [M]. 北京: 化学工业出版社, 2006: 121)
[9] Tang Z L, Niewolak L, Shemet V, et al.Development of oxidation resistant coatings for γ-TiAl based alloys[J]. Mater. Sci. Eng., 2002, A328: 297
[10] Chu M S, Wu S K.The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment[J]. Acta Mater., 2003, 51: 3109
[11] Xiong H P, Xie Y H, Mao W, et al.Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing[J]. Scr. Mater., 2003, 49: 1117
[12] Liang W, Zhao X G.Improving the oxidation resistance of TiAl-based alloy by siliconizing[J]. Scr. Mater., 2001, 44: 1049
[13] Taniguchi S, Shibata T, Asanuma N, et al.Oxidation behavior of TiAl coated with a fine-grain Co-30Cr-4Al film[J]. Oxid. Met., 1993, 39: 457
[14] Tang Z L, Wang F H, Wu W T.Effect of MCrAIY overlay coatings on oxidation resistance of TiAl intermetallics[J]. Surf. Coat. Technol., 1998, 99: 248
[15] Tang Z L, Wang F H, Wu W T.The effects of several coatings on cyclic oxidation resistance of TiAl intermetallics[J]. Surf. Coat. Technol., 1998, 110: 57
[16] Zhang X J, Li Q, Zhao S Y, et al.Improvement in the oxidation resistance of a γ-TiAl-based alloy by sol-gel derived Al2O3 film[J]. Appl. Surf. Sci., 2008, 255: 1860
[17] Tang Z L, Wang F H, Wu W T.Hot-corrosion behavior of TiAl-base intermetallics in molten salts[J]. Oxid. Met., 1999, 51: 235
[18] Tang Z L, Wang F H, Wu W T.Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl[J]. Intermetallics, 1999, 7: 1271
[19] Bacos M P, Thomas M, Raviart J L, et al.Influence of an oxidation protective coating upon hot corrosion and mechanical behaviour of Ti-48Al-2Cr-2Nb alloy[J]. Intermetallics, 2011, 19: 1120
[20] Bacos M P, Morel A, Naveos S, et al.The effect of long term exposure in oxidising and corroding environments on the tensile properties of two gamma-TiAl alloys[J]. Intermetallics, 2006, 14: 102
[21] Zhang K, Gao W, Liang Z.Molten salt vapour corrosion of Ti-Al-Ag intermetallics[J]. Intermetallics, 2004, 12: 539
[22] Feng M, Chen M H, Yu Z D, et al.Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings[J]. Acta Metall. Sin., 2017, 53: 1636(丰敏, 陈明辉, 余中狄等. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53: 1636)
[23] Tang Z L, Wang F H.Effect of enamel coating on the oxidation resistance and hot corrosion resistance of TiAl intermatallics [A]. Proceedings of the National Symposium on Surface and Interface Science and Engineering of Materials at 1998[C]. Mount Huangshan: China Society of Metals, Chinese Society of Mechanical Engineering, 1998: 108(唐兆麟, 王福会. 搪瓷涂层对TiAl金属间化合物抗氧化、热腐蚀性能的影响 [A]. '98全国材料表面与界面的科学与工程研讨会论文摘要集[C]. 黄山: 中国金属学会, 中国机械工程学会,1998: 108)
[24] Xiong Y M, Zhu S L, Wang F H, et al.Effect of alloying elements and enamel coating on the oxidation behavior of Ti3Al[J]. Acta Metall. Sin., 2002, 38(Suppl.1): 626(熊玉明, 朱圣龙, 王福会等. 合金元素及搪瓷涂层对Ti3Al系列合金抗氧化性能的影响[J]. 金属学报, 2002, 38(增刊): 626)
[25] Chen M H, Zhu S L, Wang F H.Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K[J]. J. Am. Ceram. Soc., 2010, 93: 3230
[26] Li T F.High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 262(李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 262)
[27] Felix P.Deposition and Corrosion in Gas Turbines[M]. London: Appl. Sci. Pub., 1972: 331
[28] Shao G X.Enamel [M]. Beijing: China Light Industry Press, 1983: 360(邵规贤. 搪瓷学[M]. 北京: 轻工业出版社, 1983: 360)
[29] Chen M H, Zhu S L, Wang F H.Strengthening mechanisms and fracture surface characteristics of silicate glass matrix composites with inclusion of alumina particles of different particle sizes[J]. Physica, 2013, 413B: 15
[30] Tatar C, ?zdemir N.Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method[J]. Physica, 2010, 405B: 896
[31] Xu Y K, Xu J.Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites[J]. Scr. Mater., 2004, 49: 843
[32] Wei Y, Hu S B, Zhou Y F, et al.Preparation and hot corrosion resistance of composite enamel coatings on Cr25Ni20Si2 alloy[J]. Trans. Mater. Heat Treat., 2009, 30(1): 174(魏燕, 胡树兵, 周永峰等. Cr25Ni20Si2合金表面复合搪瓷涂层的抗热腐蚀研究[J]. 材料热处理学报, 2009, 30(1): 174)
[33] Schaeffer H A .Oxygenand silicon diffusion-controlled processes in vitreous silica [J].J. Non-Cryst. Solids, 1980, 38-39: 545
[34] Schaeffer H A.Diffusion-controlled processes in glass forming melts[J]. J. Non-Cryst. Solids, 1984, 67: 19
[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[4] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[5] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[6] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[7] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[10] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[11] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[12] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[13] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[14] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[15] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.