Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1825-1832    DOI: 10.11900/0412.1961.2018.00230
  本期目录 | 过刊浏览 |
模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究
郭策安1,2,3, 陈明辉4(), 廖依敏4, 苏北1, 谢冬柏5, 朱圣龙2, 王福会4
1 沈阳理工大学装备工程学院 沈阳 110159
2 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
3 重庆建设工业(集团)有限责任公司 重庆 400054
4 东北大学材料科学与工程学院 沈阳 110819
5 新疆警察学院 乌鲁木齐 830011
Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock
Cean GUO1,2,3, Minghui CHEN4(), Yimin LIAO4, Bei SU1, Dongbai XIE5, Shenglong ZHU2, Fuhui WANG4
1 Equipment Engineering School, Shenyang Ligong University, Shenyang 110159, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Chongqing Jianshe Industry (Group) LLC, Chongqing 400054, China
4 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
5 Xinjiang Police College, Urumqi 830011, China
引用本文:

郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
Cean GUO, Minghui CHEN, Yimin LIAO, Bei SU, Dongbai XIE, Shenglong ZHU, Fuhui WANG. Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock[J]. Acta Metall Sin, 2018, 54(12): 1825-1832.

全文: PDF(4520 KB)   HTML
摘要: 

在K38G高温合金基体上分别设计涂覆了75%搪瓷釉+25%Al2O3 (E25A)和70%搪瓷釉+20%Al2O3+10%NiCrAlY (E20A10M) 2种搪瓷基复合涂层,对比研究了2种搪瓷基复合涂层在900 ℃下模拟燃气热冲击条件下的防护机制。热冲击的火焰采用C3H8+O2混合气体产生,喷射到试样涂层表面的压力为0.4 MPa,火焰喷射到试样涂层达到900 ℃后保持15 s,而后空气中冷却120 s为一个热冲击循环周期。结果表明,经燃气冲击150 cyc后,2种涂层与合金基体界面结合牢固,表现出优异的抗界面剥落能力。其中,E25A涂层热冲击前后的涂层组织结构无明显变化,表面完好,Al2O3第二相的加入提高了搪瓷的高温稳定性;而E20A10M涂层热冲击后表面产生了孔洞、开裂,发生了轻微的表层剥离。金属粉与搪瓷的界面反应Cr(NiCrAlY)+ZnO(enamel)→CrO(interface)+Zn↑,致使涂层表面鼓包,在燃气切应力和界面热应力作用下,表层金属颗粒以及搪瓷发生剥离。

关键词 搪瓷复合涂层高温腐蚀Al2O3NiCrAlY热冲击    
Abstract

High-temperature-resistant enamel coatings have been reported to be applied in non-critical hot end components of aero-engine and gas turbine recently. Although the enamel with a series of excellent properties can be as high-temperature-resistant coating material under appropriate condition, its lower soft point and inherent brittleness limit their use in broader application under severe service condition. Enamel-based composite coatings (an enamel matrix with the addition of ceramic particles and/or metal platelets) can remarkably increase the properties of the enamel coating and their protection mechanism under dynamic thermal shock needs further investigation. In this work, two kinds of enamel-based composite coatings, 70%enamel+25%Al2O3 and 70%enamel+20%Al2O3+10%NiCrAlY (mass fraction, %) abbreviated to E25A and E20A10M respectively, were designed and fired on K38G superalloy substrate, and their protection mechanism was comparatively studied at 900 ℃ under the simulated combusting gas shock. The thermal shock fire was produced by the mixture gas of C3H8+O2 and its ejecting pressure on the coating surface was 0.4 MPa. After the temperature has been stable at 900 ℃, samples were hold for 15 s and then cooling down in air for 120 s, constituting a thermal shock cycle. Results indicated that, after 150 cyc of thermal shock, both the coatings bond well with the alloy substrate, thus shows high resistance to spallation along interface. For the E25A coating, its microstructure had no obvious change after thermal shock and the surface is still intact. The addition of secondary phase Al2O3 increases the stability of enamel at high temperature. With regard to the E20A10M coating, holes and cracks form consecutively, and peeling off occurs at surface after thermal shock. Interfacial reaction between the NiCrAlY particles and enamel following Cr(NiCrAlY)+ZnO(enamel)→CrO(interface)+Zn↑ results in the formation of enamel swelling, which then, under the synergistic effect of combusting gas shear stress and interface thermal stress, leads to the peeling off of enamel and metal inclusions at surface.

Key wordsenamel-based composite coating    high-temperature corrosion    Al2O3    NiCrAlY    thermal shock
收稿日期: 2018-05-25     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目No.51471177,中央高校基本科研业务费专项基金项目No.N160205001以及辽宁省自然科学基金项目No.201602643
作者简介:

作者简介 郭策安,男,1979年生,博士

图1  样品的几何形状示意图
图2  E25A涂层的原始表面和截面形貌
图3  E25A涂层经900 ℃燃气150 cyc热冲击循环后的表面和截面形貌及放大区域的EDS线扫描结果
图4  E20A10M涂层的原始表面和截面形貌
图5  E20A10M涂层经900 ℃燃气150 cyc热冲击循环后的表面和截面形貌
图6  E20A10M涂层经900 ℃燃气150 cyc热冲击循环后的局部典型破坏方式
图7  玻璃以及外加Al2O3后的网状结构示意图
图8  搪瓷及其复合材料E25A、E20A10M的热膨胀曲线
图9  E20A10M涂层的主要破坏机制示意图
[1] Liu W, Li W Z, Yang J B, et al.Current research status of enamel coatings on titanium alloys[J]. Mater. Rev., 2013, 27(3): 45(刘伟, 李伟洲, 杨剑冰等. 钛合金搪瓷涂层研究现状[J]. 材料导报, 2013, 27(3): 45)
[2] Zhang C Y, Zhang Q G, Yang W K.Research on process improvement of the enamel coating for the 2nd stage guide vane of certain turbojet engine[J]. Aviat. Maint. Eng., 2015, (10): 99(张从艳, 张清贵, 杨武奎. 某型涡喷发动机II级导向器叶片搪瓷涂层工艺方法改进技术研究[J]. 航空维修与工程, 2015, (10): 99)
[3] Choi S Y, Ahn J M.Viscous sintering and mechanical properties of 3Y-TZP-reinforced LAS glass-ceramic composites[J]. J. Am. Ceram. Soc., 1997, 80: 2982
[4] Boccaccini A R, Pearce D H.Toughening of glass by a piezoelectric secondary phase[J]. J. Am. Ceram. Soc., 2003, 86: 180
[5] Rouxel T, Baron B, Verdier P, et al.SiC particle reinforced oxynitride glass: Stress relaxation, creep and strain-rate imposed experiments[J]. Acta Mater., 1998, 46: 6115
[6] Lange F F.Fracture energy and strength behavior of a sodium borosilicate glass-Al2O3 composite system[J]. J. Am. Ceram. Soc., 1971, 54: 614
[7] Bolelli G, Cannillo V, Lusvarghi L, et al.Glass-alumina composite coatings by plasma spraying. Part I: Microstructural and mechanical characterization[J]. Surf. Coat. Technol., 2006, 201: 458
[8] Ray A, Tiwari A N.Compaction and sintering behaviour of glass-alumina composites[J]. Mater. Chem. Phys., 2001, 67: 220
[9] Krstic V V, Nicholson P S, Hoagland R G.Toughening of glasses by metallic particles[J]. J. Am. Ceram. Soc., 1981, 64: 499
[10] Banuprakash G, Katyal V, Murthy V S R, et al. Mechanical behaviour of borosilicate glass-copper composites[J]. Composites, 1997, 28A: 861
[11] Cannillo V, Leonelli C, Manfredini T, et al.Mechanical performance and fracture behaviour of glass-matrix composites reinforced with molybdenum particles[J]. Compos. Sci. Technol., 2005, 65: 1276
[12] Dlouhy I, Reinisch M, Boccaccini A R, et al.Fracture characteristics of borosilicate glasses reinforced by metallic particles[J]. Fatigue Fract. Eng. Mater. Struct., 1997, 20: 1235
[13] Biswas D R.Strength and fracture toughness of indented glass-nickel compacts[J]. J. Mater. Sci., 1980, 15: 1696
[14] Nivas Y, Fulrath R M.Limitation of Griffith flaws in glass-matrix composites[J]. J. Am. Ceram. Soc., 1970, 53: 188
[15] Dlouhy I, Boccaccini A R.Preparation, microstructure and mechanical properties of metal-particulate/glass-matrix composites[J]. Compos. Sci. Technol., 1996, 56: 1415
[16] Pernot F, Rogier R.Mechanical properties of phosphate glass-ceramic-316L stainless steel composites[J]. J. Mater. Sci., 1993, 28: 6676
[17] Guo J T, Yuan C, Yang H C, et al.Creep-rupture behavior of a directionally solidified nickel-base superalloy[J]. Metall. Mater. Trans., 2001, 32A: 1103
[18] Wang J L, Chen M H, Cheng Y X, et al.Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corros. Sci., 2017, 123: 27
[19] Guo C A, Wang W, Cheng Y Y, et al.Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy[J]. Corros. Sci., 2015, 94: 122
[20] Chen M H, Shen M L, Wang X, et al.Oxidation and thermal shock behavior of a glass-alumina composite coating on K38G superalloy at 1000 ℃[J]. J. Mater. Sci. Technol., 2012, 28: 433
[21] Wu M Y.A study on microstructure regulation and protection mechanism against high temperature oxidation of enamel-based composite coatings [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(邬明玉. 搪瓷基复合涂层的组织结构调控及抗高温氧化机制研究 [D]. 沈阳: 中国科学院金属研究所, 2017)
[22] Chen M H, Zhu S L, Shen M L, et al.Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites[J]. Mater. Sci. Eng., 2011, A528: 1360
[23] Chen M H, Zhu S L, Wang F H.High temperature oxidation of NiCrAlY, nanocrystalline and enamel-metal nano-composite coatings under thermal shock[J]. Corros. Sci., 2015, 100: 556
[24] Feng M, Chen M H, Yu Z D, et al.Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings[J]. Acta Metall. Sin., 2017, 53: 1636(丰敏, 陈明辉, 余中狄等. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53: 1636)
[25] Donald I W.Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings[J]. J. Mater. Sci., 1993, 28: 2841
[26] Donald I W, Metcalfe B L, Gerrard L A.Interfacial reactions in glass-ceramic-to-metal seals[J]. J. Am. Ceram. Soc., 2008, 91: 715
[1] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[2] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[3] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[4] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[5] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[6] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[7] 丰敏, 陈明辉, 余中狄, 吕振波, 朱圣龙, 王福会. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53(12): 1636-1644.
[8] 宋鹏, 陈榕, 冯晶, 吕建国, 陆建生. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析[J]. 金属学报, 2017, 53(11): 1504-1510.
[9] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[10] 刘涛,董加胜,谢光,王义胜,李辉,李志军,周兴泰,楼琅洪. GH3535合金在FLiNaK熔盐中的腐蚀行为[J]. 金属学报, 2015, 51(9): 1059-1066.
[11] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[12] 刘毅, 江国锋, 许昆, 罗锡明, 陈登权, 李伟. 中间层金属对Al2O3/1Cr18Ni9Ti钎焊接头组织及剪切强度的影响*[J]. 金属学报, 2015, 51(2): 209-215.
[13] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[14] 彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为*[J]. 金属学报, 2014, 50(2): 202-211.
[15] 蔡俊,凌国平,陈长安,张桂凯. 液态Al氧化的环境透射电镜观察[J]. 金属学报, 2013, 49(8): 953-958.