Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1253-1261    DOI: 10.11900/0412.1961.2018.00079
  本期目录 | 过刊浏览 |
稀土Ce对钎具钢中夹杂物的改质机理研究
黄宇1, 成国光1(), 谢有2
1 北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
2 中天钢铁集团有限公司 常州 213011
Modification Mechanism of Cerium on the Inclusions in Drill Steel
Yu HUANG1, Guoguang CHENG1(), You XIE2
1 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2 Zenith Steel Group Co., Ltd., Changzhou 213011, China
引用本文:

黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. Acta Metall Sin, 2018, 54(9): 1253-1261.

全文: PDF(4909 KB)   HTML
摘要: 

通过向钎具钢中加入稀土Ce元素,研究了Ce对钎具钢中镁铝尖晶石和硫化物的改质过程和改质机理。结合SEM和EDS对钢中夹杂物的形貌、组成、数量和尺寸进行分析,采用Thermo-Calc和Factsage 6.3热力学软件对Ce改质尖晶石和硫化物的改质机理以及钢中合适Ce的质量分数进行理论计算。结果表明,稀土Ce对Al2O3、MgAl2O4和(Ca, Mn)S都具有很好的改质效果。无Ce添加时,钎具钢中夹杂物以MgAl2O4和(Ca, Mn)S为主;当钎具钢中的稀土含量为0.0078%时,MgAl2O4被改质为Ce-O,(Ca, Mn)S被改质为Ce-S,同时还存在一定量的Ce-O和MgO共生相,钢中夹杂物的尺寸减小。热力学计算结果表明,钢中不同的Ce含量对应不同的稀土夹杂物(CeAlO3、Ce-O)类型。稀土Ce对MgAl2O4的改质顺序为:MgAl2O4→CeAlO3+MgO→Ce2O3+MgO→Ce2O3,Factsage 6.3的理论计算结果与实验观察基本吻合。

关键词 稀土Ce钎具钢夹杂物热力学计算    
Abstract

Fatigue fracture is the main failure forms of drill steel, and the hard oxide with large size is one of the main reasons for the fatigue fracture of drill steel. Therefore, the miniaturization and softening of inclusion can effectively improve the anti-fatigue performance of drill steel and prolong its service life. Rare earth elements have very good affinity with oxygen and sulfur in molten steel, and the hardness of resulting rare earth compounds is very low. In this work, the rare earth element cerium was added into drill steel to investigate the effect of Ce on the MgAl2O4 and sulfides. The composition, morphology, number, and size of inclusions in drill steel were analyzed by using SEM and EDS. The evolution process and modification mechanism of Ce on MgAl2O4 and sulfides were clarified by experimental results and calculated by thermodynamic software. The type of inclusions in drill steel without Ce addition is MgAl2O4 and (Ca, Mn)S. As the Ce content in drill steel reaches to 0.0078% (mass fraction), the type of inclusions changes to Ce-O and Ce-S. In addition, a few complex inclusions, mixture of Ce-O and MgO, were also found. The size of inclusions in drill steel decreases significantly as the oxides and sulfides were modified into Ce-O and Ce-S. The calculated results show that MgAl2O4 and (Ca, Mn)S in drill steel can be effectively modified into Ce-O and Ce-S as the Ce added into molten steel, and the modification sequence of Ce on the MgAl2O4 is as follows: MgAl2O4→CeAlO3+MgO→Ce2O3+MgO→Ce2O3. The content of Ce in drill steel has great influence on the type of inclusions. The modification mechanism of Ce on MgAl2O4 calculated by Factsage 6.3 agrees well with the experimental observations.

Key wordsrare earth cerium    drill steel    inclusion    thermodynamic calculation
收稿日期: 2018-03-05     
ZTFLH:  TF769.9  
基金资助:国家自然科学基金项目No.51674024
作者简介:

作者简介 黄 宇,男,1992年生,博士

Steel C Si Mn P S Cr Ni
A 0.24 0.25 0.7 0.0098 0.0022 1.25 2.85
B 0.26 0.27 0.7 0.0055 0.0017 1.26 2.85
Steel Mo Ca Alt Als Mg O Ce Fe
A 0.26 0.0004 0.025 0.024 0.0003 0.0016 0 Bal.
B 0.26 <0.0002 0.025 0.025 0.0007 0.001 0.0078 Bal.
表1  试样的化学成分
图1  钢A中夹杂物的形貌
图2  Mg-Al-O类夹杂物的组成
图3  钢A中复合类夹杂物的线扫描和面扫描图
图4  钢B中典型夹杂物的形貌
图5  Ce-O-S类夹杂物的组成
图6  钢B中Ce-O-S+MgO的线扫描图
图7  钢B中Ce-O-S+MgO的面扫描图
图8  Ce对夹杂物的改质过程和成分变化
Steel Proportion of inclusions with different diameter / % Number density
mm-2
<3 μm 3~6 μm >6 μm
A 51.5 37.3 11.2 14.8
B 62.5 33.7 3.8 15.8
表2  钢中夹杂物的数量和尺寸
图9  钢A的平衡凝固计算
图10  钢A的Scheil凝固模型计算
图11  1873 K时钢A中Mg-Al-O体系的稳定相图
图12  Ce对Mg-Al-O类夹杂物的改质过程
图13  1873 K时钢B中Ce-Al-O相平衡图
Equation ΔGθ / (J·mol-1)
[Ce]+[S]=CeS(s) -422100+120.38 T
[Ce]+3/2[S]=1/2Ce2S3(s) -536420+163.86 T
[Ce]+4/3[S]=1/3Ce3S4(s) -497670+146.3 T
表3  各稀土夹杂物的标准生成Gibbs自由能[26,27,28]
图14  1873 K时钢B中Ce-S相平衡图
图15  稀土Ce夹杂物的生成过程简图
[1] Hu Z G.Research and development of drill steel and drill tools[J]. Rock Drill. Mach. Pneum. Tools, 2011, (4): 6(胡支国. 钎钢钎具产品的研制与开发[J]. 凿岩机械气动工具, 2011, (4): 6)
[2] Li B X.Failure analysis and fracture mechanism of whorl drill steel[J]. Rock Drill. Mach. Pneum. Tools, 1999, (2): 55(黎炳雄. 螺纹钎杆的失效分析和断裂机理[J]. 凿岩机械气动工具, 1999, (2): 55)
[3] Liang X J.Study on the substitution of domestic materials and manufacturing technology for rock drill[D]. Taiyuan: Taiyuan University of Science & Technology, 2014(梁晓捷. 凿岩钎具国产材料替代及制造工艺的研究[D]. 太原: 太原科技大学, 2014)
[4] Zhou F Y, Xu Z H.Failure analysis of the heavy drill rod made in China[J]. Mater. Mech. Eng., 1997, 21(3): 47(周凤云, 徐志宏. 国产重型凿岩钎杆的失效分析[J]. 机械工程材料, 1997, 21(3): 47)
[5] Zhu H W, Liu Y Z, Zhou L Y, et al.Failure analysis of 22Si2MnCrNi2MoA drilling rods[J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 613(朱洪武, 刘雅政, 周乐育等. 22Si2MnCrNi2MoA钎杆断裂失效分析[J]. 北京科技大学学报, 2013, 35: 613)
[6] Yan Y M, Liu Y Z, Zhou L Y, et al.Influence of heat treatment process on microstructure and properties of 23CrNi3Mo steel[J]. Trans. Mater. Heat Treat., 2014, 35: 110(闫永明, 刘雅政, 周乐育等. 热处理工艺对23CrNi3Mo钎具钢组织及性能的影响[J]. 材料热处理学报, 2014, 35: 110)
[7] Hong D L, Gu T H, Xu S G, et al.Drill Steel and Drilling Tools [M]. Beijing: Metallurgical Industry Press, 2000: 24(洪达灵, 顾太和, 徐曙光等. 钎钢与钎具 [M]. 北京: 冶金工业出版社, 2000: 24)
[8] Tanaka K, Mura T.A theory of fatigue crack initiation at inclusions[J]. Metall. Trans., 1982, 13A: 117
[9] Wang Q Y, Bathias C, Kawagoishi N, et al.Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. Int. J. Fatigue, 2002, 24: 1269
[10] Gall K, Horstemeyer M F, Degner B W, et al.On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy[J]. Int. J. Fract., 2001, 108: 207
[11] Melander A.A finite element study of short cracks with different inclusion types under rolling contact fatigue load[J]. Int. J. Fatigue, 1997, 19: 13
[12] Zhang J M, Li S X, Yang Z G, et al.Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime[J]. Int. J. Fatigue, 2007, 29: 765
[13] Monnot J, Heritier B, Cogne J Y.Relationship of melting practice, inclusion type, and size with fatigue resistance of bearing steels [A]. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels[C]. West Conshohocken: ASTM International, 1988: 149
[14] Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels [J]. J. Alloys Compd., 2006, 408-412: 384
[15] Waudby P E.Rare earth additions to steel[J]. Int. Met. Rev., 1978, 23: 74
[16] Yang X H, Wu P F, Cheng G G, et al.Behavior of rare earth on modifying inclusion in special steel[J]. J. Chin. Rare Earth Soc., 2010, 28: 612(杨晓红, 吴鹏飞, 成国光等. 特殊钢中稀土变质夹杂物行为研究[J]. 中国稀土学报, 2010, 28: 612)
[17] Wang L J, Liu Y Q, Wang Q, et al.Evolution mechanisms of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway[J]. ISIJ Int., 2015, 55: 970
[18] Hirata H, Isobe K.Steel having finely dispersed inclusions [P]. U.S. Pat, 20060157162A1, 2004
[19] Liu X, Yang J C, Yang L, et al.Effect of Ce on inclusions and impact property of 2Cr13 stainless steel[J]. J. Iron Steel Res. Int., 2010, 17: 59
[20] Wakoh M, Sawai T, Mizoguchi S.Effect of S content on the MnS precipitation in steel with oxide nuclei[J]. ISIJ Int., 1996, 36: 1014
[21] Verma N, Pistorius P C, Fruehan R J, et al.Calcium modification of spinel inclusions in aluminum-killed steel: Reaction steps[J]. Metall. Mater. Trans., 2012, 43B: 830
[22] Liu H L, Liu C J, Jiang M F.Effect of rare earths on impact toughness of a low-carbon steel[J]. Mater. Des., 2012, 33: 306
[23] Yan N, Yu S F, Chen Y.In situ observation of austenite grain growth and transformation temperature in coarse grain heat affected zone of Ce-alloyed weld metal[J]. J. Rare Earths, 2017, 35: 203
[24] Hao F F, Liao B, Li D, et al.Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism[J]. J. Rare Earths, 2011, 29: 609
[25] Wang L M.Application of Rare Earth in Low Alloy and Alloy Steel [M]. Beijing: Metallurgical Industry Press, 2016: 16(王龙妹. 稀土在低合金及合金钢中的应用 [M]. 北京: 冶金工业出版社, 2016: 16)
[26] Li W C.Thermodynamics of the formation of rare-earth inclusions in steel[J]. Iron Steel, 1986, 21(3): 7(李文超. 钢中稀土夹杂物生成的热力学规律[J]. 钢铁, 1986, 21(3): 7)
[27] Adabavazeh Z, Hwang W S, Su Y H.Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel[J]. Sci. Rep., 2017, 7: 46503
[28] Ma Q Q, Wu C C, Cheng G G, et al.Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements[J]. Mater. Today, 2015, 2: S300
[29] Wilson W G, Kay D, Vahed A.The use of thermodynamics and phase equilibria to predict the behavior of the rare earth elements in steel[J]. JOM, 1974, 26(5): 14
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[6] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[7] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[8] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[11] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[12] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[13] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.