Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 911-917    DOI: 10.11900/0412.1961.2017.00400
  本期目录 | 过刊浏览 |
Zr对Mg-Gd-Er合金晶粒细化机理的影响
李淑波1, 杜文博1(), 王旭东2,3, 刘轲1, 王朝辉1
1 北京工业大学材料科学与工程学院 北京 100124
2 北京石墨烯技术研究院 北京 100095
3 北京航空材料研究院 北京 100095
Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys
Shubo LI1, Wenbo DU1(), Xudong WANG2,3, Ke LIU1, Zhaohui WANG1
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 Beijing Institute of Graphene Technology, Beijing 100095, China
3 AVIC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. Acta Metall Sin, 2018, 54(6): 911-917.

全文: PDF(6516 KB)   HTML
摘要: 

利用OM、EBSD对比分析了Zr的加入对Mg-Gd-Er合金凝固组织的影响,采用DSC测试了Mg-11Gd-2Er和Mg-11Gd-2Er-0.4Zr 2种合金熔体的过冷度,计算了Zr的加入对合金熔体润湿角及形核激活能的影响,利用HRTEM分析了Zr与Mg的界面关系及Zr的加入对界面能的影响。结果表明,Zr的加入能明显细化Mg-Gd-Er合金的晶粒尺寸,晶粒尺寸由大概率的1000 μm降到了50 μm,细化效果明显;Zr的加入使合金熔体的润湿角由18.3°降到了11.1°,熔体的形核激活能降低了44.4%;Mg的(1010)面与Zr的(1100)面完全共格,降低了Mg和Zr之间的界面能。熔体润湿角的降低和Mg与Zr的完全共格界面关系是细化Mg-Gd-Er合金晶粒尺寸的有效机制。

关键词 Mg-Gd-Er-Zr合金润湿角形核激活能界面能晶粒细化机制    
Abstract

In recent years, Zr is widely used as an important additive element in magnesium alloys containing rare earth (RE), to improve the mechanical properties of Mg-RE alloys such as strength, ductility, creep resistance and corrosion resistance property. Heterogeneous nucleation mechanism and peritectic reaction mechanism are recognized as the main grain refining mechanisms. Whereas, during the solidification process, the melt wetting angle and nucleation energy are important factors which influence the nucleation. In this work, the effect of Zr on the solidification microstructure of the Mg-Gd-Er alloy was analyzed by using OM and EBSD; the undercooling of alloy melts was tested by using DSC; and the Mg/Zr interface relationship and interfacial energy were investigated by using HRTEM. Moreover, the effects of Zr on the wetting angle and nucleation activation energy of the Mg-11Gd-2Er and Mg-11Gd-2Er-0.4Zr alloys were investigated; the refinement mechanism of Zr on the alloys was discussed. The results indicates that the addition of Zr element can significantly refine the grain, and the grain size decreased from 1000 μm to 50 μm. Compared with the Zr-free alloy, the nucleation wetting angle of the present alloy melt decreased from 18.3° to 11.1°, and the activation energy of nucleation decreased by 44.4%. The (1010) plane of Mg was completely coherent with the (1100) plane of Zr, reducing the interfacial energy between the (1010)Mg and the (1100)Zr. The grain refinement of Mg-Gd-Er alloy was ascribed to the decrease of melt wetting angle and the fully coherent interface relationship between Mg and Zr.

Key wordsMg-Gd-Er-Zr alloy    wetting angle    nucleation activation energy    interfacial energy    grain refinement mechanism
收稿日期: 2017-09-22     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目No.2016YFB0301001及北京市自然科学基金项目Nos.2172013和2162003
作者简介:

作者简介 李淑波,女,1975年生,博士

Alloy Mg Gd Er Zr
Mg-11Gd-2Er 87.65 10.62 1.73 -
Mg-11Gd-2Er-0.4Zr 87.39 10.54 1.69 0.38
表1  实验合金化学成分
图1  Zr的加入对合金晶粒尺寸的影响
图2  Zr元素对Mg-11Gd-2Er合金晶粒尺寸影响的EBSD分析及晶粒尺寸分布图
图3  Mg-11Gd-2Er-0.4Zr合金的SEM像及其EDS Zr元素分布图
图4  Zr核的TEM像及EDS
图5  Mg-11Gd-2Er和Mg-11Gd-2Er-0.4Zr合金的DSC曲线
Alloy TL TN ΔT
Mg-11Gd-2Er 904.3 889.2 15.1
Mg-11Gd-2Er-0.4Zr 905.7 894.4 11.3
表2  镁合金熔体固液转变的特征温度
图6  Mg-11Gd-2Er-0.4Zr合金中Zr核与Mg基体界面HRTEM像
[1] Ma Q, Stjohn D H, Frost M T.Characteristic zirconium-rich coring structures in Mg-Zr alloys[J]. Scr. Mater., 2002, 46: 649
[2] Watanabe H, Mukai T, Ishikawa K, et al.Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy[J]. Mater. Sci. Eng., 2001, A307: 119
[3] Wang J, Yang Y S, Tong W H.Effect of purification treatment on corrosion resistance of Mg-Gd-Y-Zr alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 949
[4] Wang L Y, Huang J, Dong J, et al.Microstructure evolution in the fusion zone of laser-welded Mg-Gd-Y-Zr alloy during solution and aging treatment[J]. Mater. Charact., 2016, 118: 486
[5] Wang H, Wang Q D, Boehlert C J, et al.Tensile and compressive creep behavior of extruded Mg-10Gd-3Y-0.5Zr (wt.%) alloy[J]. Mater. Charact., 2015, 99: 25
[6] Lu F M, Ma A B, Jiang J H, et al.Enhanced mechanical properties and rolling formability of fine-grained Mg-Gd-Zn-Zr alloy produced by equal-channel angular pressing[J]. J. Alloys Compd., 2015, 643: 28
[7] Yin S Q, Zhang Z Q, Liu X, et al.Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg-Zn-Gd-Zr alloys[J]. Mater. Sci. Eng., 2017, A695: 135
[8] Zeng X Q, Wu Y J, Peng L M, et al.LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy[J]. Acta Metall. Sin., 2010, 46: 1041(曾小勤, 吴玉娟, 彭立明等. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相[J]. 金属学报, 2010, 46: 1041)
[9] Lv B J, Peng J, Peng Y, et al.The effect of LPSO phase on hot deformation behavior and dynamic recrystallization evolution of Mg-2.0Zn-0.3Zr-5.8Y alloy[J]. Mater. Sci. Eng., 2013, A579: 209
[10] Chen Q, Xia X S, Yuan B G, et al.Hot workfability behavior of as-cast Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2014, A593: 38
[11] Zhang Z Q, Liu X, Wang Z K, et al.Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg-Y-Zn-Zr alloys[J]. Mater. Des., 2015, 88: 915
[12] Lan A Y, Huo L F.Effect of substitution of minor Nd for Y on mechanical and damping properties of heat-treated Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2016, A651: 646
[13] Xu C, Zheng M Y, Xu S W, et al.Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing[J]. Mater. Sci. Eng. 2015, A643: 137
[14] Bettles C J, Gibson M A, Zhu S M.Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy[J]. Mater. Sci. Eng., 2009, A505: 6
[15] Zhang S J, Li W X.The effect of Zr to the grain size and as-cast mechanical properties of magnesium alloy Mg-Ce[J]. Light Alloy Fabric. Technol., 2003, 31(2): 16(张世军, 黎文献. Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响[J]. 轻合金加工技术, 2003, 31(2): 16)
[16] Liu H M, Chen Y G, Tang Y B, et al.Effect of Zr-adding on microstructure and mechanical properties for Mg-5Sn alloy[J]. Rare Met. Mater. Eng., 2006, 35: 1912(刘红梅, 陈云贵, 唐永柏等. Zr对Mg-5Sn合金显微组织与力学性能的影响[J]. 稀有金属材料与工程, 2006, 35: 1912)
[17] Huan Z G, Leeflang M A, Zhou J, et al.In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys[J] J. Mater. Sci. Mater. Med., 2010, 21: 2623
[18] Sun M, Wu G H, Wang W, et al.Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J]. Mater. Sci. Eng., 2009, A523: 145
[19] Lee Y C, Dahle A K, Stjohn D H.The role of solute in grain refinement of magnesium[J]. Metall. Mater. Trans., 2000, 31A: 2895
[20] Qian M, Das A.Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains[J]. Scr. Mater., 2006, 54: 881
[21] Peng Z K, Zhang X M, Chen J M, et al.Grain refinement mechanism of zirconium in the Mg-9Gg-4Y alloys[J]. J. Univ. Sci. Technol. Beijing, 2006, 28: 148(彭卓凯, 张新明, 陈健美等. Zr在Mg-9Gd-4Y合金中的晶粒细化机制[J]. 北京科技大学学报, 2006, 28: 148)
[22] Qian M, Stjohn D H, Frost M T.Characteristic zirconium-rich coring structures in Mg-Zr alloys[J]. Scr. Mater., 2002, 46: 649
[23] Mueller B A, Perepezko J H.The undercooling of aluminum[J]. Metall. Mater. Trans., 1987, 18A: 1143
[24] Holland-Moritz D, Schroers J, Herlach D M, et al.Undercooling and solidification behaviour of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co[J]. Acta Mater., 1998, 46: 1601
[25] Gao Y M.Principle of Metal Solidification [M]. Xi'an: Xi'an Jiaotong University Press, 2010: 39(高义民. 金属凝固原理 [M]. 西安: 西安交通大学出版社, 2010: 39)
[26] Turnbull D.Formation of crystal nuclei in liquid metals[J]. J. Appl. Phys., 1999, 21: 1022
[27] Huang C, Song B, Mao J H, et al.The mathematical model of wetting angle of heterogeneous nucleation[J]. Sci. China, 2004, 34E: 737(黄诚, 宋波, 毛璟红等. 非均质形核润湿角数学模型研究[J]. 中国科学, 2004, 34E: 737)
[28] Jian Z Y, Chang F E, Ma W H, et al.Nucleation and undercooling of metal melt[J]. Sci. China, 2000, 30E: 9(坚增运, 常芳娥, 马卫红, 等. 金属熔体的形核和过冷度[J]. 中国科学, 2000, 30E: 9)
[29] Bramfitt B.The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid Iron[J]. Metall. Trans., 1970, 1: 1987
[1] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[3] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[4] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[5] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[6] 刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.
[7] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[8] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[9] 张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋. 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究[J]. 金属学报, 2015, 51(3): 315-324.
[10] 戴付志, 张文征. 双相不锈钢中沉淀相平衡形貌及界面结构的原子尺度计算[J]. 金属学报, 2014, 50(9): 1123-1127.
[11] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[12] 彭东剑,林鑫,张云鹏,郭雄,王猛,黄卫东. 界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响[J]. 金属学报, 2013, 49(3): 365-371.
[13] 杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.
[14] 夏志新 张弛 杨志刚. 强磁场对低活化钢中析出行为和力学性能的影响[J]. 金属学报, 2011, 47(6): 713-719.
[15] 孟广慧; 林鑫; 杜立成; 黄卫东 . 试样厚度对共晶组织形态的影响[J]. 金属学报, 2007, 43(5): 459-464 .