Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 347-356    DOI: 10.11900/0412.1961.2017.00429
  本期目录 | 过刊浏览 |
RH精炼过程中气液两相流动及混匀现象的模拟研究
刘畅, 李树森, 张立峰()
北京科技大学冶金与生态工程学院 北京 100083
Simulation of Gas-Liquid Two-Phase Flow and Mixing Phenomena During RH Refining Process
Chang LIU, Shusen LI, Lifeng ZHANG()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘畅, 李树森, 张立峰. RH精炼过程中气液两相流动及混匀现象的模拟研究[J]. 金属学报, 2018, 54(2): 347-356.
Chang LIU, Shusen LI, Lifeng ZHANG. Simulation of Gas-Liquid Two-Phase Flow and Mixing Phenomena During RH Refining Process[J]. Acta Metall Sin, 2018, 54(2): 347-356.

全文: PDF(6076 KB)   HTML
摘要: 

利用水模型与数值模拟相结合的方法,对Ruhrstahl-Heraeus (RH)精炼过程中的多相流体流动及混匀现象进行模拟研究。根据相似原理建立与实际210 t RH精炼装置几何相似比为1:5的水模型,采用粒子图像测速(PIV)技术获取水模型中心截面处流场分布。数值模拟采用多相流模型(VOF)和离散相模型(DPM)相耦合的计算方法,湍流模型分别选用k-ε模型和大涡模拟(LES)模型。对比测量值与计算值,结果表明2种湍流模型均能较好地预测RH内流场分布;而采用LES模拟能够获得RH内瞬态的速度分布及漩涡的产生和耗散过程。测量并计算了水模型钢包内整体的混匀时间分布,结果表明上升管附近区域的混匀时间大于下降管附近区域的混匀时间。开发了气泡膨胀的数学模型,并将其用于钢液-氩气体系的模拟计算,结果表明气泡膨胀过程对钢液流动的影响显著。

关键词 RH精炼大涡模拟混匀时间气泡膨胀    
Abstract

The Ruhrstahl-Heraeus (RH) vacuum system is vitally important in the secondary refining process since it is highly effective on decarburization and degassing, which involves complex multiphase flow and transport phenomena. Many investigations on the flow field in the RH refining process have been reported. However, only several investigations are focused on the bubble expansion in the up-leg snorkel. In this work, the combined mathematical model and physical model were employed to simulate the fluid flow and mixing phenomena in the RH reactor. A water model for a practical 210 t RH reactor was established according to similitude principle, and the flow field on the center section of the physical model was captured by PIV (particle image velocimetry) system. The coupled VOF (volume of fluid) model and DPM (discrete phase model) were used to simulate the multiphase fluid flow in the RH reactor. Both the k-ε model and LES (large eddy simulation) model were performed to describe the turbulent characteristics during the RH refining process. The mathematical model was validated by the water model with the same experimental conditions. It suggests that the calculated results show a good agreement with the measured one. Based on the LES model, the instantaneous velocity distribution and the generate and the dissipate of vortex were computed. Also, the mixing time of different position in the ladle was measured and calculated. The results show that the mixing time near the up-leg snorkel is larger than that near the down-leg snorkel. A model for bubble expansion was developed and used to simulate the bubble behavior in the steel-argon system. The results show that the bubble expansion has a strong impact on the flow field in the RH reactor.

Key wordsRH refining    large eddy simulation    mixing time    bubble expansion
收稿日期: 2017-10-16     
基金资助:国家自然科学基金项目Nos.51725402、51504020和51704018,及国家重点研发计划项目Nos.2017YFB0304000、2017YFB-0304001和2016YFB0300102
作者简介:

作者简介 刘 畅,女,1991年生,博士生

图1  计算网格尺寸及边界条件
图2  水模型尺寸及监测点布置示意图
Item Phase Density / (kgm-3) Viscosity / (kgm-1s-1) Temperature / K
Water model Water 998.2 1.03×10-3 298
Air 1.225 1.7894×10-5
Prototype Liquid steel 7020 6.7×10-3 1873
Argon 0.25 8.9×10-5
表1  RH水模型与原型物性参数对照表
图3  水模型真空室内流场分布测量值与计算值对比
图4  水模型钢包内流场分布测量值与计算值对比
图5  中心截面特征线上计算与测量速度值对比
图6  水模型测量不同位置处脉动速度
图7  不同湍流模型速度等值面对比
图8  大涡模拟瞬态速度分布
图9  时均速度云图及气泡分布
图10  初始示踪剂分布
图11  水模型监测点电导率或浓度变化曲线
图12  水模型混匀时间分布测量值与计算值对比
图13  上升管内气泡直径分布
图14  中心截面上速度分布
[1] Park Y G, Yi K W.A new numerical model for predicting carbon concentration during RH degassing treatment[J]. ISIJ Int., 2003, 43: 1403
[2] Zhang L F, Li F.Investigation on the fluid flow and mixing phenomena in a Ruhrstahl-Heraeus (RH) steel segasser using physical modeling[J]. JOM, 2014, 66: 1227
[3] Maas H, Hupfer P.The significance of the circulation rate on the vacuum treatment of liquid steel with the RH process[J]. Vacuum, 1969, 19: 199
[4] Asai S, Okamoto T, He J C, et al.Mixing time of refining vessels stirred by gas injection[J]. ISIJ Int., 1983, 23: 43
[5] Tsujino R, Nakashima J, Hirai M, et al.Numerical analysis of molten steel flow in ladle of RH process[J]. ISIJ Int., 1989, 29: 589
[6] Ling H T, Li F, Zhang L F, et al.Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model[J]. Metall. Mater. Trans., 2016, 47B: 1950
[7] Chen G J, He S P, Li Y G.Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF-DPM coupled model[J]. Metall. Mater. Trans., 2017, 48B: 2176
[8] Kishan P A, Dash S K.Prediction of circulation flow rate in the RH degasser using discrete phase particle modeling[J]. ISIJ Int., 2009, 49: 495
[9] Zhang J M, Liu L, Zhao X Y, et al.Mathematical model for decarburization process in RH refining process[J]. ISIJ Int., 2014, 54: 1560
[10] Geng D Q, Zheng J X, Wang K, et al.Simulation on decarburization and inclusion removal process in the Ruhrstahl-Heraeus (RH) process with ladle bottom blowing[J]. Metall. Mater. Trans., 2015, 46B: 1484
[11] Chen G J, He S P, Li Y G, et al.Investigation of gas and liquid multiphase flow in the Rheinsahl-Heraeus (RH) reactor by using the euler-euler approach[J]. JOM, 2016, 68: 2138
[12] Neves L, De Oliveira H P O, Tavares R P. Evaluation of the effects of gas injection in the vaccum chamber of a RH degasser on melt circulation and decarburization rates[J]. ISIJ Int., 2009, 49: 1141
[13] Jiang F, Cheng G.Effects of gas injection with multihole orifices in upleg snorkel on bubble behaviour and decarburisation rate during RH refining[J]. Ironmaking Steelmaking, 2012, 39: 386
[14] Li L M, Liu Z Q, Li B K, et al.Water model and CFD-PBM coupled model of gas-liquid-slag three-phase flow in ladle metallurgy[J]. ISIJ Int., 2015, 55: 1337
[15] Park Y G, Doo W G, Yi K W, et al.Numerical calculation of circulation flow rate in the degassing Rheinstahl-Heraeus process[J]. ISIJ Int., 2000, 40: 749
[16] Szekely J, Fang S D.Studies in vacuum degassing: Mass and momentum transfer to gas bubbles rising in melts, the freeboard of which is evacuated[J]. Metall. Trans., 1974, 5: 1429
[17] Ajmani S K, Dash S K, Chandra S, et al.Mixing evaluation in the RH process using mathematical modelling[J]. ISIJ Int., 2004, 44: 82
[18] Geng D Q, Lei H, He J C.Effect of traveling magnetic field on flow, mixing, decarburization and iinclusion removal during RH refining process[J]. ISIJ Int., 2012, 52: 1036
[19] Li L M, Liu Z Q, Cao M X, et al.Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)-volume of fluid (VOF) coupled model[J]. JOM, 2015, 67: 1459
[20] Sahai Y, Emi T.Criteria for water modeling of melt flow and inclusion removal in continuous casting tundishes[J]. ISIJ Int., 1996, 36: 1166
[21] Aoki J, Zhang L, Thomas B, et al.Modeling of inclusion removal in ladle refining [A]. ICS 2005-The 3rd International Congress on the Science and Technology of Steelmaking[C]. Warrendale: Association for Iron & Steel Technology, 2005: 319
[22] Chen G J, He S P, Li Y G, et al.Modeling dynamics of agglomeration, transport, and removal of Al2O3 clusters in the RH reactor based on CFD-PBM coupled model[J]. Ind. Eng. Chem. Res., 2016, 55: 7030
[23] Sano M, Mori K, Fujita Y.Dispersion of gas injected into liquid metal[J]. Tetsu Hagané, 1979, 65: 1140(佐野正道, 森一美, 藤田康久, 溶融金属中ガス吹込みにおける気泡の分散[J]. 鉄と鋼, 1979, 65: 1140)
[24] Liao Y X, Lucas D.A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chem. Eng. Sci., 2009, 64: 3389
[25] Liao Y X, Lucas D.A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chem. Eng. Sci., 2010, 65: 2851
[26] Zhang L, Taniguchi S.Fundamentals of inclusion removal from liquid steel by bubble flotation[J]. Int. Mater. Rev., 2000, 45: 59
[27] Zhu M Y, Inomoto T, Sawada I, et al.Fluid flow and mixing phenomena in the ladle stirred by argon through multi-tuyere[J]. ISIJ Int., 1995, 35: 472
[28] Wei J H, Yu N W, Fan Y Y, et al.Study on flow and mixing characteristics of molten steel in RH and RH-KTB refining processes[J]. J. Shanghai Univ. Engl. Ed., 2002, 6: 167
[1] 刘中秋,李宝宽,姜茂发,张立,徐国栋. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究[J]. 金属学报, 2013, 49(5): 513-522.
[2] 李宝宽 刘中秋 齐凤升 王芳 徐国栋. 薄板坯连铸结晶器非稳态湍流大涡模拟研究[J]. 金属学报, 2012, 48(1): 23-32.
[3] 姚军 Michael Fairweather 李宁. 粒状腐蚀产物在管道中的沉积机理[J]. 金属学报, 2011, 47(7): 804-808.
[4] 钱忠东; 吴玉林 . 连铸结晶器内钢液涡流现象的大涡模拟及控制[J]. 金属学报, 2004, 40(1): 88-93 .