Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1445-1452    DOI: 10.11900/0412.1961.2017.00076
  研究论文 本期目录 | 过刊浏览 |
AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究
赵林, 穆鑫, 董俊华(), 伍立坪, 王长罡, 柯伟
中国科学院金属研究所 沈阳 110016
Study on the Galvanic Current of Corrosion Behavior for AH32 Long-Scale Specimen in Simulated Tidal Zone
Lin ZHAO, Xin MU, Junhua DONG(), Liping WU, Changgang WANG, Wei KE
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

赵林, 穆鑫, 董俊华, 伍立坪, 王长罡, 柯伟. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53(11): 1445-1452.
Lin ZHAO, Xin MU, Junhua DONG, Liping WU, Changgang WANG, Wei KE. Study on the Galvanic Current of Corrosion Behavior for AH32 Long-Scale Specimen in Simulated Tidal Zone[J]. Acta Metall Sin, 2017, 53(11): 1445-1452.

全文: PDF(1677 KB)   HTML
摘要: 

利用自制的模拟实验装置模拟实海潮差,监测了在模拟潮差区内AH32长尺试样的电偶电流和电极电位变化情况。结果表明,由于供氧差异形成的宏电池作用,AH32长尺试样在潮差区和全浸区内的电极电位分布不均衡,引发了内部的电偶电流,其实质为阴、阳极反应产生的净电流。在潮差区内,AH32长尺试样不同部位的电偶电流随潮位运动发生周期性变化;当潮位最高时,所有部位的电偶电流均处于极大值状态,且中间潮位部位的电偶电流最大,由此所引起的阳极电流也最大。根据电偶电流的变化计算出的干燥、润湿和浸没状态的时间分布表明,AH32长尺试样在潮位区不同部位的腐蚀量取决于润湿和浸没时间在该部位的分配。各部位在浸没态时存在宏电池作用,产生电偶电流。而在润湿态下,由于薄液膜的溶液电阻很大,导致宏电池驱动电位几乎等于在薄液膜上的电压降,因此宏电池作用极弱,且不产生电偶电流。润湿时间和润湿电量的关系显示,潮位运动中AH32长尺试样的最大润湿时间出现在平均中潮位以上的部位,表明因润湿引起的该部位的腐蚀失重最大。结合由浸没态引起的平均中潮位腐蚀失重最大的结果可以确定,在潮水涨落过程中AH32长尺试样的最大腐蚀失重量应出现在平均中潮位偏上的部位,这与腐蚀速率的测量结果一致。

关键词 AH32钢潮差区长尺试样电偶电流电极电位    
Abstract

The environment of the tidal zone is very complex. The interactions of dry-wet alternation and sea erosion lead to serious corrosion of steel structures, which makes it difficult to adopt protective methods. Therefore, it is of great significance to study the corrosion and protection methods of steel in tidal zone. For long-scale steel through the tidal zone and immersion zone, there is a big difference in corrosion behavior with complete immersion condition, the potential of the steel surface changes due to the influence of oxygen concentration difference and tidal fluctuations or other factors. In this study, the galvanic current and open circuit potential of the long-scale AH32 steel were monitored in simulated tidal zone. The results shows that the potential at different tide levels and different immersion depths for a long-scale AH32 specimen is not unified, with the macro cell was formed by the difference of oxygen supply, which caused internal galvanic current. The essence of the galvanic current is the net current that was generated by the sum of anode and cathode current. Galvanic current at different positions on the long-scale AH32 specimen varies with the tidal movement periodically in tidal zone. When tide is at the highest level, the galvanic current of all parts accesses a maximum value, and among these maximum values, the largest one is at the middle part of specimen, which causes the biggest anodic dissolution current density. According to the variation of the galvanic current, the time distributions of the drying, wetting and immersion states were calculated, and the results showed that the corrosion scale of the long-scale AH32 specimen at different positions depends on the time all location of wetting and immersion in tidal zone. The macro cell caused the galvanic current when all parts of the specimen were immersed. At wetting state, the solution resistance of the thin liquid film is very large, which leads to the change of the driving potential of the macro cell into the potential drop. Thus, macro cell is ineffective in the wetting state and cannot produce the galvanic current. According to the relation between wetting time and quantity of electricity at wetting state, the maximum wetting time of the long-scale AH32 specimen is shown above average mean tide level in tidal zone, which indicates that the corrosion loss of this part is maximum due to wetting state. In addition to weight loss measurements, maximum of it for long-scale AH32 specimen was obtained at the average mean tide level caused by immersion state. It can be indicated the maximum weight loss of the long-scale AH32 specimen should appear upper the average mean tide level part in tidal zone. These results were consistent with measurements of corrosion rates.

Key wordsAH32 steel    tidal zone    long-scale specimen    galvanic current    potential
收稿日期: 2017-06-09     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金项目No.51671200,国家高技术研究发展计划项目No.2015AA034301,国家腐蚀平台基金和中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室资助项目No.MCKF201611
作者简介:

作者简介 赵 林,男,1979年生,博士

图1  长尺试样电偶电流测量示意图
图2  腐蚀5 d时不同位置的电极电位Eocp、电偶电流Ig变化曲线和潮位变化曲线
Position in Fig.1 I II III
a 0.345~11.655 11.655~12 12~12.345
b 2.55~9.45 9.45~12 12~14.55
c 4.725~7.275 7.275~12 12~16.725
d 6~12 12~18
表1  涨落潮过程中不同狭缝位置所对应的时间段节点
图3  由电偶电流计算得到的干湿交替时间柱状图
图4  各种状态下电偶电流电量随潮位变化图
图5  AH32钢15 d浸没实验后在模拟潮差区间平均腐蚀速率变化
图6  各状态下测量位置附近腐蚀示意图
[1] Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
[2] Jeffrey R, Melchers R E.Effect of vertical length on corrosion of steel in the tidal zone[J]. Corrosion, 2009, 65: 695
[3] Melchers R E.Long-term immersion corrosion of steels in seawaters with elevated nutrient concentration[J]. Corros. Sci., 2014, 81: 110
[4] Schumacher M.Seawater Corrosion Handbook[M]. Park Ridge, New Jersey, U.S.A.: Noyes Data Corporation, 1979: 5
[5] Larrabee C P.Corrosion-resistant experimental steel for marine application[J]. Corrosion, 1958, 14: 21
[6] Huang G Q.Corrosion of stainless steels in tidal zone-exposure test for 16 years[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 330(黄桂桥. 不锈钢海水潮汐区16年腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22: 330)
[7] Refait P, Jeannin M, Sabot R, et al.Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics[J]. Corros. Sci., 2015, 90: 375
[8] Li Y, Hou B, Li H, et al.Corrosion behavior of steel in Chengdao offshore oil exploitation area[J]. Mater. Corros., 2004, 55: 305
[9] Refait P, Jeannin M, Sabot R, et al.Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater[J]. Corros. Sci., 2013, 71: 32
[10] Yan J F, White R E, Griffin R B.Parametric studies of the formation of calcareous deposits on cathodically protected steel in seawater[J]. J. Electrochem. Soc., 1993, 140: 1275
[11] Melchers R E, Jeffrey R.Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26
[12] Li Y T, Hou B R.Study on rust layers on steel in different marine corrosion zone[J]. Chin. J. Ocean. Limnol., 1998, 16: 231
[13] Luo Y N, Song S Z, Jin W X, et al.In field electrochemical detections and corrosion behavior of carbon steel samples[J]. J. Chem. Ind. Eng., 2008, 59: 2864(雒娅楠, 宋诗哲, 金威贤等. 碳钢试片实海电化学检测与腐蚀规律的相关性[J]. 化工学报, 2008, 59: 2864)
[14] Luo Y N.In field electrochemical detection and erosion-corrosion investigation of metallic materials in marine environment [D]. Tianjin: Tianjin University, 2007(雒娅楠. 海洋环境中金属材料现场电化学检测及冲刷腐蚀研究 [D]. 天津: 天津大学, 2007)
[15] Mu X, Wei J, Dong J H, et al.Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone[J]. Acta. Metall. Sin., 2012, 48: 420)(穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48: 420)
[16] Mu X, Wei J, Dong J H, et al.In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy[J]. J. Mater. Sci. Technol., 2014, 30: 1043
[17] Mu X, Wei J, Dong J H, et al.The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone[J]. Acta Metall. Sin., 2014, 50: 1294(穆鑫, 魏洁, 董俊华等. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50: 1294)
[18] Yamashita M, Nagano H, Oriani R A.Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution[J]. Corros. Sci., 1998, 40: 1447
[19] Zhang Y, Dai M A.Galvanic corrosion of ship-building steel couples with low potential-difference in seawater[J]. J. Chin. Soc. Corros. Prot., 1993, 13: 87(张英, 戴明安. 海水中舰船钢低电位差电偶的腐蚀[J]. 中国腐蚀与防护学报, 1993, 13: 87)
[20] Hou B R, Zhang J L.The corrosion behavior of steel in the tidal and immersion zone[J]. Mar. Sci., 1980, 4(4): 16(侯保荣, 张经磊. 钢材在潮差区和全浸区的腐蚀行为[J]. 海洋科学, 1980, 4(4) : 16)
[21] Su F T, Charles E A.A theoretical approach to galvanic corrosion, allowing for cathode dissolution[J]. Corros. Sci., 1988, 28: 649
[22] Cao C N.Principle of Electrochemistry of Corrosion [M]. 2nd Ed.,Beijing: Chemical Industry Press, 2004: 99(曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 99)
[23] Huang G Q, Yu C J, Li L.Study on galvanic corrosion of steel couples in seawater[J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46(黄桂桥, 郁春娟, 李兰. 海水中钢的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2001, 21: 46)
[24] Azumi K, Naganuma A, Sato Y.Coupling current mapping of corroding iron in a wet and dry cyclic corrosion test[J]. J. Solid. State Electrochem., 2015, 19: 3543
[25] Zhang X G, Valeriote E M.Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes[J]. Corros. Sci., 1993, 34: 1957
[1] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[2] 穆鑫, 魏洁, 董俊华, 柯伟. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50(11): 1294-1304.