Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 968-974    DOI: 10.11900/0412.1961.2017.00043
  本期目录 | 过刊浏览 |
温度与应变速率对Invar 36合金变形行为的影响
李细锋1, 陈楠楠1, 李佼佼1, 何雪婷2, 刘红兵2, 郑兴伟2, 陈军1()
1 上海交通大学模具CAD国家工程研究中心 上海 200030
2 上海飞机制造有限公司 上海 201324
Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy
Xifeng LI1, Nannan CHEN1, Jiaojiao LI1, Xueting HE2, Hongbing LIU2, Xingwei ZHENG2, Jun CHEN1()
1 National Engineering Research Center of Die and Mold CAD, Shanghai Jiao Tong University, Shanghai 200030, China
2 Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China
引用本文:

李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. Acta Metall Sin, 2017, 53(8): 968-974.

全文: PDF(1553 KB)   HTML
  
摘要: 

在室温至900 ℃温度范围内、不同初始应变速率(8×10-5、8×10-4和8×10-3 s-1)下,利用单向拉伸实验研究了温度与应变速率对Invar 36合金拉伸力学性能的影响,并选择室温、600和800 ℃进行三点弯曲实验,分析温度对Invar 36合金厚板回弹规律的影响。结果表明,Invar 36合金的屈服强度、抗拉强度随温度的升高而大幅降低;延伸率则先升高后降低,在600 ℃时出现峰值,达到69.2%,比室温提高了55%,这主要由于动态再结晶使塑性提高所致。当温度较低时(室温和500 ℃),应变速率对Invar 36合金力学性能影响不大;但当温度升高至800 ℃时,Invar 36合金的强度和塑性均随初始应变速率的减小而大幅减小,初始应变速率由8×10-3 s-1降至8×10-5 s-1,屈服强度、抗拉强度和延伸率分别降低了38%、47%和50%;由室温升高至800 ℃时,三点弯曲回弹量减小87.0%。

关键词 Invar 36合金温度应变速率力学性能回弹    
Abstract

Since the thermal expansion coefficient of Invar 36 alloy is so low that it matches the composite materials well. It is very suitable as the material of composite material forming mould. Invar 36 alloy mould surface is usually produced by hot pressing technology. The hot pressing temperature and strain rate severely affect the quality of mould surface. In this work, the mechanical properties of Invar 36 alloy were studied in the temperature range from room temperature to 900 ℃ under different initial strain rates (8×10-5, 8×10-4 and 8×10-3 s-1) by using uniaxial tensile tests. The effect of temperature on the springback trend of thick Invar 36 alloy sheet by three-point bending tests at room temperature, 600 ℃ and 800 ℃ was investigated. The results indicate that the yield strength and ultimate tensile strength of Invar 36 alloy significantly decrease with increasing temperature. Meanwhile, the elongation firstly increases and then decreases with the increase of temperature. It reaches a peak value of 69.2% at 600 ℃ and increases by 55% than that at ambient temperature, which mainly results from the plasticity improvement by dynamic recrystallization. Invar 36 alloy at lower temperature (room temperature and 500 ℃) shows insensitive to the strain rate. Nevertheless, the strength and plasticity at 800 ℃ substantially decrease with decreasing strain rate. When the strain rate decreases from 8×10-3 s-1 to 8×10-5 s-1, the yield strength, ultimate tensile strength and elongation reduce by 38%, 47% and 50%, respectively. The three-point bending springback value decreases by 87.0% when the tested temperature increases from room temperature to 800 ℃.

Key wordsInvar 36 alloy    temperature    strain rate    mechanical property    springback
收稿日期: 2017-02-13     
ZTFLH:  TG142.76  
作者简介:

作者简介 李细锋,男,1980年生,副研究员,博士

图1  三点弯曲实验模具
图2  不同温度拉伸后试样的宏观断口
图3  不同温度下Invar 36合金的拉伸工程应力-应变曲线
Temperature Yield strength Ultimate tensile Elongation
MPa strength %
MPa
Room temp. 292 447 44.7
210 185 352 45.7
500 113 267 49.5
600 81 203 69.2
700 71 138 59.1
800 56 88 38.5
900 34 51 38.0
表1  不同温度下Invar 36合金的拉伸力学性能
图4  初始Invar 36合金和不同温度拉伸后组织的OM像
图5  Invar 36合金高温拉伸断口附近纵截面组织OM像
图6  不同温度下应变速率对Invar 36合金工程应力-应变曲线的影响
Temperature / ℃ αf / (o) αi / (o) Δα / (o) Ks / %
Room temperature 34.85 38.60 3.75 10.8
600 31.50 32.95 1.45 4.6
800 32.15 32.60 0.45 1.4
表2  Invar 36合金厚板不同温度下三点弯曲回弹实验数据
[1] Nan J M, Li G X, Xu K W.Yielding behavior of low expansion invar alloy at elevated temperature[J]. J. Mater. Process. Technol., 2001, 114: 36
[2] Wang J P.Process development for invar shadow mask[J]. Vac. Electron., 1999, (4): 54(王建平. 殷钢荫罩的加工工艺[J]. 真空电子技术, 1999, (4): 54)
[3] Shiga M.Invar alloys[J]. Curr. Opin. Solid State Mater. Sci., 1996, 1: 340
[4] Gibbons G, Wimpenny D.Mechanical and thermomechanical properties of metal spray invar for composite forming tooling[J]. J. Mater. Eng. Perform., 2000, 9: 630
[5] Ha T K, Min S H.Effect of C content on the microstructure and physical properties of Fe-36Ni Invar alloy[J]. Mater. Sci. Forum, 2015, 804: 293
[6] Zhao Y, Sato Y S, Kokawa H, et al.Microstructure and properties of friction stir welded high strength Fe-36 wt%Ni alloy[J]. Mater. Sci. Eng., 2011, A528: 7768
[7] DeBra D B. Vibration isolation of precision machine tools and instruments[J]. CIRP Ann. Manuf. Technol., 1992, 41: 711
[8] Wimpenny D I, Gibbons G J.Metal spray invar tooling for composites[J]. Aircr. Eng. Aerosp. Technol., 2000, 72: 430
[9] Schell W R. Invar tooling for composites, tooling for composites [R]. Long Beach, CA: Society of Manufacturing Engineers, 1989, TE89/503: 1
[10] Durham S, Duquenne C.New developments in the manufacture of invar tooling for composite components [A]. Proceedings of the 71st Annual Forum[C]. Virginia Beach, Virginia: American Helicopter Society International, Inc., 2015: 1803
[11] Xiong W, Zhang H, Vitos L, et al.Magnetic phase diagram of the Fe-Ni system[J]. Acta Mater., 2011, 59: 521
[12] Zhang J M.Welding process optimization for Invar steel mold used in civil aircraft composite structures [D]. Harbin: Harbin Institute of Technology, 2013(张家铭. 民机复材结构用Invar钢模具焊接工艺优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[13] Waeckerlé T.Low nickel content FCC alloys: Recent evolution and applications[J]. IEEE Trans. Magn., 2010, 46: 326
[14] Yang B, Li H, Cao Z H.Application of Invar in mould for composites[J]. Fiber Reinf. Plast./Compos., 2010, (6): 68(杨博, 李宏, 曹正华. 殷钢在复合材料成形模具中的应用[J]. 玻璃钢/复合材料, 2010, (6): 68)
[15] Vinogradov A, Hashimoto S, Kopylov V I.Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy[J]. Mater. Sci. Eng., 2003, A355: 277
[16] Huang G H, Zhang D M, Yan D X, et al.Manufacturing technology research on Invar steel mould[J]. Adv. Aeron. Sci. Eng., 2011, 2: 485(黄钢华, 张冬梅, 晏冬秀等. Invar钢模具制造工艺研究[J]. 航空工程进展, 2011, 2: 485)
[17] Michler T.Influence of gaseous hydrogen on the tensile properties of Fe-36Ni INVAR alloy[J]. Int. J. Hydrogen Energy, 2014, 39: 11807
[18] Nan J M, Li G X, Xu K W, et al.Elevated temperature deformation behaviour and mechanical characteristics of Invar alloy used for shadow mask[J]. J. Mater. Eng., 2001, 1(1): 19(南俊马, 李光新, 徐可为等. 显示器荫罩用因瓦合金的高温变形行为与力学特性[J]. 材料工程, 2001, 1(1): 19)
[19] Yuan J P, Yi D Q, Yu Z M, et al.Influence of the deformation and heat treatment on the microstructures and properties of Invar alloy[J]. Heat Treat. Met., 2005, 30(2): 50(袁均平, 易丹青, 余志明等. 变形与热处理对Invar合金组织及性能的影响[J]. 金属热处理, 2005, 30(2): 50)
[20] Liu H W, Sun Z H, Wang G K, et al.Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy[J]. Mater. Sci. Eng., 2016, A654: 107
[21] Guo X P, Kusabiraki K, Saji S.High-temperature scale formation of Fe-36% Ni bicrystals in air[J]. Oxid. Met., 2002, 58: 589
[22] Yu Y C, Chen W Q, Zheng H G.High-temperature oxidation behavior and formation mechanism of rolling cracks of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2013, 32: 83
[23] Yu Y C, Chen W Q, Zheng H G.Influence of heating conditions on the oxidation behavior of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2014, 33: 253
[24] Yu Y C, Chen W Q, Zheng H G.Research on the hot ductility of Fe-36Ni Invar alloy[J]. Rare Met. Mater. Eng., 2014, 43: 2969
[25] Li G H, Wang M J, Kang R K.Dynamic mechanical properties and constitutive model of Fe-36Ni invar alloy at high temperature and high strain rate[J]. Mater. Sci. Technol., 2010, 18: 824(李国和, 王敏杰, 康仁科. Fe-36Ni高温高应变率动态力学性能及其本构关系[J]. 材料科学与工艺, 2010, 18: 824)
[26] Li G H, Cai Y J, Qi H J. Study on constitutive relationship of Fe-36Ni Invar alloy [J]. Adv. Mater. Res., 2011, 291-294: 1131
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.