Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 824-832    DOI: 10.11900/0412.1961.2016.00417
  本期目录 | 过刊浏览 |
激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为
张媛媛,林鑫(),魏雷,任永明
西北工业大学凝固技术国家重点实验室 西安 710072
Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder
Yuanyuan ZHANG,Xin LIN(),Lei WEI,Yongming REN
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
Yuanyuan ZHANG, Xin LIN, Lei WEI, Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. Acta Metall Sin, 2017, 53(7): 824-832.

全文: PDF(5367 KB)   HTML
  
摘要: 

将等离子旋转电极法所制Zr55Cu30Al10Ni5 (Zr55)粉末在1000 K退火处理后作为沉积材料,应用激光立体成形技术沉积Zr55块体非晶合金,考察工艺参数及退火态粉末尺寸对熔覆层晶化行为的影响。结果表明,不同尺寸退火态粉末组织均由Al5Ni3Zr2、CuZr2和Al2Zr3相组成。以不同激光线能量熔覆后,试样的熔池区主要为非晶,晶化区由熔池底部到热影响区依次分布NiZr2纳米晶、CuZr2+ZrCu枝状共晶和CuZr2+ZrCu球粒状共晶,共晶尺寸随着距熔池区距离的增加而减小。当激光线能量较低时,熔覆层均保持较高含量的非晶相。随着激光线能量的增大,尺寸为75~106 μm的退火态粉末所制试样的晶化程度无明显加强,而尺寸为106~150 μm的退火态粉末所制试样的晶化程度显著加剧。Zr55合金熔覆沉积层的晶化差异受粉末本身相结构影响较小,主要由熔覆不同尺寸粉末时熔池及热影响区的热历史决定。

关键词 Zr55Cu30All0Ni5块体非晶合金激光立体成形粉末状态晶化    
Abstract

Laser solid forming (LSF) provides an innovative way in building the bulk metallic glasses (BMGs) due to its inherently rapid heating and cooling process and point by point additive manufacturing process, which can eliminate the limitation of critical casting size of BMGs. The annealed powder has been demonstrated to be applicable to the preparation of BMGs with high content of amorphous phase using LSF. In this work, the plasma rotating electrode processed (PREPed) Zr55Cu30Al10Ni5 (Zr55) powders annealed at 1000 K are used for LSF of Zr55 BMGs. The influences of powder size and laser processing parameter on the crystallization characteristic of the deposit are investigated, and the crystallization behavior of the remelted zone (RZ) and heat affected zone (HAZ) is analyzed. It is found that the microstructures of the pre-annealed Zr55 powders are composed of the Al5Ni3Zr2, CuZr2 and Al2Zr3 phases. As the heat input increases from 7.0 J/mm to 15.7 J/mm, the every deposited layer presents a periodic repeating gradient microstructure (amorphous, NiZr2 nanocrystal, CuZr2+ZrCu dendrite-like eutectic, CuZr2+ZrCu spherulite-like eutectic) from the molten pool to the HAZ. The size of the eutectic phase in the HAZ decreases as the increase of distance from the featureless amorphous zone. On condition that the laser heat input is less than 7.0 J/mm, the deposits contain a high content of amorphous phase. As the increase of laser heat input, the crystallization degree of HAZ does not increase obviously for the deposit prepared by the powder with size range of 75~106 μm. However, the crystallization degree of HAZ increases significantly for the deposit prepared by the powder with size range of 106~150 μm. That is because the lower overheating temperature and shorter existing time of the molten pool enhances the heredity of Al5Ni3Zr2 clusters and other intermetallic clusters in remelted alloy melt during LSF of coarser powder, which decreases the thermal stability of the already-deposited layer and induces the severe crystallization. It is deduced that the raw state of annealed powders has a minimal impact on the crystallization behavior of the Zr55 deposited layers when the content of Al5Ni3Zr2 phase is same in different sizes of annealed powders. The thermal history of RZ and HAZ during deposition is the primary factor to affect the crystallization behavior in the Zr55 deposits fabricated by different powder sizes.

Key wordsZr55Cu30All0Ni5 bulk metallic glass    laser solid forming    powder state    crystallization
收稿日期: 2016-09-18     
基金资助:国家自然科学基金项目Nos.51323008、51271213、51475380,国家高技术研究发展计划项目No.2013AA031103,国家重点基础研究发展计划项目No.2011CB610402以及中央高校基本科研业务费专项资金项目No.3102015BJ(II)ZS013
Composition Zr Cu Al Ni O
Measured 66.85 25.58 3.58 3.83 0.16
Nominal 67.01 25.46 3.61 3.92 -
表1  Zr55Cu30All0Ni5 (Zr55)合金粉末的实测化学成分和名义化学成分
Specimen No. D / μm P / W v / (mms-1) P/v / (Jmm-1)
1 106~150 1400 200 7.0
2 75~106 1400 200 7.0
3 106~150 900 83 10.8
4 75~106 900 83 10.8
5 106~150 1300 83 15.7
6 75~106 1300 83 15.7
表2  激光立体成形的工艺参数
图1  不同尺寸Zr55原始粉末和退火态粉末的SEM-BSE像
图2  不同尺寸Zr55原始粉末以及经1000 K退火后粉末的XRD谱
图3  采用不同尺寸退火态粉末在不同激光线能量下所制熔覆层横截面的OM像
图4  熔覆沉积试样1~6的XRD谱
图5  熔覆沉积试样5和试样6道间晶化区的SEM像
图6  熔覆沉积试样3枝晶区和球粒晶区的TEM像及SAED花样
图7  单道熔覆Zr55非晶合金时的温度场模拟结果
图8  超过冷Zr55合金中CuZr2相与ZrCu相形核孕育时间与过冷度之间的关系
图9  Zr55合金中层片共晶、ZrCu和CuZr2枝晶的生长速率随过冷度的变化
[1] Schroers J.Processing of bulk metallic glass[J]. Adv. Mater., 2010, 22: 1566
[2] Inoue A, Takeuchi A.Recent development and application products of bulk glassy alloys[J]. Acta Mater., 2011, 59: 2243
[3] Hu Q, Lin X, Yang G L, et al.Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metall. Sin., 2012, 48: 1467
[3] (胡桥, 林鑫, 杨高林等. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48: 1467)
[4] Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
[5] Somekawa H, Inoue A, Higashi K.Superplastic and diffusion bonding behavior on Zr-Al-Ni-Cu metallic glass in supercooled liquid region[J]. Scr. Mater., 2004, 50: 1395
[6] Ye X Y, Shin Y C.Synthesis and characterization of Fe-based amorphous composite by laser direct deposition[J]. Surf. Coat. Technol., 2014, 239: 34
[7] Yang G L, Lin X, Liu F C, et al.Laser solid forming Zr-based bulk metallic glass[J]. Intermetallics, 2012, 22: 110
[8] Pauly S, L?ber L, Petters R, et al.Processing metallic glasses by selective laser melting[J]. Mater. Today, 2013, 16: 37
[9] Bai Y W, Bian X F, Lv X Q, et al.Heredity of medium-range order structure from melts to amorphous solids[J]. J. Appl. Phys., 2012, 112: 083524
[10] Balla V K, Bandyopadhyay A.Laser processing of Fe-based bulk amorphous alloy[J]. Surf. Coat. Technol., 2010, 205: 2661
[11] Zhang Y Y, Lin X, Wei L, et al.Influence of powder size on the crystallization behavior during laser solid forming Zr55Cu30Al10Ni5 bulk amorphous alloy[J]. Intermetallics, 2016, 76: 1
[12] Zhang Y Y, Lin X, Yang H O, et al.Influence of powdered state on crystallization during laser solid forming Zr55Cu30Al10Ni5 bulk metallic glasses[J]. Acta Phys. Sin., 2015, 64: 0166402
[12] (张媛媛, 林鑫, 杨海欧等. 粉末状态对激光立体成形Zr55Cu30Al10Ni5块体非晶合金晶化行为的影响[J]. 物理学报, 2015, 64: 0166402)
[13] Zhang Y Y, Lin X, Wang L L, et al.Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66: 22
[14] Al-Jaroudi S S, Ul-Hamid A, Mohammed A R I, et al. Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples[J]. Powder Technol., 2007, 175: 115
[15] Chokethawai K, McCartney D G, Shipway P H. Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings[J]. J. Alloys Compd., 2009, 480: 351
[16] Basu A, Samant A N, Harimkar S P, et al.Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel[J]. Surf. Coat. Technol., 2008, 202: 2623
[17] Zhu W H, Gu Y Q.Fundamentals of Statistical Physics [M]. Beijing: Tsinghua University Press, 1983: 208
[17] (朱文浩, 顾毓沁. 统计物理学基础 [M]. 北京: 清华大学出版社, 1983: 208)
[18] Sih S S, Barlow J W.Measurement and prediction of the thermal conductivity of powders at high temperature [A]. Proceedings of the 6th Annual SFF Symposium[C]. Austin: The University of Texas, 1994: 397
[19] Dai K, Shaw L.Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders[J]. Acta Mater., 2004, 52: 69
[20] Mao J, Zhang H F, Fu H M, et al.Influence of casting temperature on the thermal stability of Zr-based metallic glasses[J]. J. Alloys Compd., 2010, 496: 595
[21] Miracle D B.The efficient cluster packing model——An atomic structural model for metallic glasses[J]. Acta Mater., 2006, 54: 4317
[22] Ye S L, Li X Y, Bian X F, et al.Remelting treatment and heredity phenomenon in the formation of Fe78Si9B13 amorphous alloy[J]. J. Alloys Compd., 2013, 562: 143
[23] Lipton J, Kurz W, Trivedi R.Rapid dendrite growth in undercooled alloys[J]. Acta Metall., 1987, 35: 957
[24] Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
[25] Shao G.Thermodynamic and kinetic aspects of intermetallic amorphous alloys[J]. Intermetallics, 2003, 11: 313
[26] Smityhells C J.Metals Reference Book[M]. 5th Ed., London: Butterworth & Ltd., 1976: 186
[27] Schroers J, Johnson W L.History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts[J]. J. Appl. Phys., 2000, 88: 44
[28] Katakam S, Kumar V, Santhanakrishnan S, et al.Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion[J]. J. Alloys Compd., 2014, 604: 266
[1] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[2] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[3] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[4] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[6] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[7] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
[8] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[9] 宋衎,喻凯,林鑫,陈静,杨海欧,黄卫东. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能*[J]. 金属学报, 2015, 51(8): 935-942.
[10] 宋梦华, 林鑫, 刘丰刚, 杨海欧, 黄卫东. 激光立体成形零件竖直外侧壁向内倾斜的形成及模型*[J]. 金属学报, 2015, 51(6): 753-761.
[11] 刘奋成, 林鑫, 余小斌, 黄春平, 黄卫东. 激光立体成形GH4169合金再结晶过程中的界面和晶体取向演化*[J]. 金属学报, 2014, 50(4): 463-470.
[12] 杨高林,林鑫,胡桥,宋梦华,汪志太,黄卫东. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响[J]. 金属学报, 2013, 49(8): 925-931.
[13] 胡桥 林鑫 杨高林 黄卫东 李金富. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48(12): 1467-1473.
[14] 刘彤 朱亚蓉 张同文 张涛. 加压退火对Gd36La20Al24Co20块体非晶合金晶化行为和热稳定性的影响[J]. 金属学报, 2011, 47(4): 502-506.
[15] 龚静 杨红旺 杨柏俊 王瑞春 李荣德 王建强. 非晶态及部分晶化态Al-Ni-Y合金的磁性[J]. 金属学报, 2011, 47(3): 333-336.