Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 851-860    DOI: 10.11900/0412.1961.2016.00476
  本期目录 | 过刊浏览 |
Mg-7Zn-xCu-0.6Zr合金热裂行为的研究
周野,毛萍莉(),王志,刘正,王峰
沈阳工业大学材料科学与工程学院 沈阳 110870
Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys
Ye ZHOU,Pingli MAO(),Zhi WANG,Zheng LIU,Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
Ye ZHOU, Pingli MAO, Zhi WANG, Zheng LIU, Feng WANG. Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys[J]. Acta Metall Sin, 2017, 53(7): 851-860.

全文: PDF(4585 KB)   HTML
摘要: 

采用“T”型热裂模具研究了不同Cu含量对Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金热裂行为的影响。利用XRD和SEM对Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金进行了显微组织和热裂区域组织形貌观察。通过测量热裂纹体积表征了Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热裂倾向性。实验结果表明,Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金中随着Cu含量的增加,晶粒得到细化,晶界上的共晶相增多,共晶相在凝固末期对分离的枝晶起到补缩的作用,降低合金热裂倾向性。研究表明,Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金微观裂纹的形成是液膜、凝固收缩补偿和晶间搭桥共同作用的结果。

关键词 Mg-Zn-Cu-Zr合金热裂行为凝固曲线微观组织    
Abstract

As one of the highest temperature magnesium alloys, Mg-Zn-Cu ternary alloys are draw much attention in recent years. However, the previous investigations were mainly focused on their microstructure and mechanical properties. The investigations on their solidification and hot tearing behaviors are barely discussed. In order to improve the industrial applications of Mg-Zn-Cu alloy, it is necessary to better understand the solidification pathways, phase constituent and hot tearing susceptibility (HTS) of these alloys. In this work, the effect of Cu additions on the hot tearing behaviors of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys was studied using with T type hot tearing mold. The microstructure and the morphology of cracking zone of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were observed by XRD and SEM, respectively. The hot cracking susceptibility of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were characterized by the measurement of crack volume. The experimental results show that the grain sizes of Mg-7Zn-0.6Zr alloys were refined by addition of Cu element. Meanwhile, the amount of eutectic phase was increased with increasing the Cu content and the separated dendritic was refilled by the eutectic phase. Hot tearing susceptibility of Mg-7Zn-0.6Zr was decreased with increasing of Cu content. The Mg-7Zn-0.6Zr and Mg-7Zn-1Cu-0.6Zr alloys were completely broken. The hot cracks of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were formed by liquid film, solidification shrinkage and interdendritic bridge.

Key wordsMg-Zn-Cu-Zr alloy    hot tearing behavior    solidification curve    microstructure
收稿日期: 2016-10-25     
基金资助:国家自然科学基金项目Nos.51504153和51571145,以及辽宁省教育厅科学技术研究一般项目No.L2015397
图1  热裂行为测试装置示意图
图2  枝晶相干温度Tcoh和枝晶相干点固相分数fscoh图
Alloy Tcoh / ℃ fscoh
Mg-7Zn-0.6Zr 619.1 0.32
Mg-7Zn-1Cu-0.6Zr 610.6 0.39
Mg-7Zn-2Cu-0.6Zr 599.6 0.51
Mg-7Zn-3Cu-0.6Zr 598.9 0.57
表1  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的枝晶相干温度(Tcoh)和对应的固相分数(fscoh)
图3  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热分析曲线
图4  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的XRD谱
Alloy α-Mg MgZnCu MgZn2
Mg-7Zn-0.6Zr 624.7 - 422.3
Mg-7Zn-1Cu-0.6Zr 620.1 529.5 432.6
Mg-7Zn-2Cu-0.6Zr 619.4 531.9 453.9
Mg-7Zn-3Cu-0.6Zr 616.9 532.5 457.4
表2  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的各种反应的反应温度
图5  200和250 ℃时Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热裂裂纹形貌
图6  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的收缩力与温度曲线
图7  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的OM像
图8  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金晶粒尺寸
图9  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金裂纹处断口SEM像
[1] Mao P L, Liu Z X, Liu Z, et al.Effect of grain size on adiabatic shear sensitivity of AZ31 magnesium alloy[J]. J Shenyang Univ. Technol., 2015, 37: 494
[1] (毛萍莉, 刘遵鑫, 刘正等. 晶粒大小对AZ31镁合金绝热剪切敏感性的影响[J]. 沈阳工业大学学报, 2015, 37: 494)
[2] Liu Z, Wang Y, Wang G Z, et al.Developing trends of research and application of magnesium alloys[J]. Chin. J Mater. Res., 2000, 14: 449
[2] (刘正, 王越, 王中光等. 镁基轻质材料的研究与应用[J]. 材料研究学报, 2000, 14: 449)
[3] Mordike B L, Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[4] Dahle A K, Lee Y C, Nave M D, et al.Development of the as-cast microstructure in magnesium-aluminium alloys[J]. J. Light Met., 2001, 1: 61
[5] Huang Z H, Liang S M, Chen R S, et al.Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys[J]. J. Alloys Compd., 2009, 468: 170
[6] Wang Y S, Sun B D, Wang Q D, et al.An understanding of the hot tearing mechanism in AZ91 magnesium alloy[J]. Mater. Lett., 2002, 53: 35
[7] Ding H, Fu H Z, Liu Z Y, et al.Compensation of solidification contraction and hot cracking tendency of alloy[J]. Acta Metall. Sin., 1997, 33: 921
[7] (丁浩, 傅恒志, 刘忠元等. 凝固收缩补偿与合金的热裂倾向[J]. 金属学报, 1997, 33: 921)
[8] Monroe C, Beckermann C. Development of a hot tear indicator for steel castings [J]. Mater. Sci. Eng., 2005, A413-414: 30
[9] Mathier V, Drezet J M, Rappaz M.Two-phase modelling of hot tearing in aluminium alloys using a semi-coupled approach[J]. Modell. Simul. Mater. Sci. Eng., 2007, 15: 121
[10] Xu R F.Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Ji'nan: Shandong University, 2014
[10] (许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014)
[11] Huang Y G, Wu G H, Hou Z Q, et al.Hot crack susceptibility of Mg-Gd-Y-Zr magnesium alloy[J]. Spec. Cast. Nonferrous Alloys, 2009, 29: 181
[11] (黄玉光, 吴国华, 侯正全等. Mg-Gd-Y-Zr合金的热裂性能[J]. 特种铸造及有色合金, 2009, 29: 181)
[12] Eskin D G, Suyitno, Katgerman L.Mechanical properties in the semi-solid state and hot tearing of aluminium alloys[J]. Prog. Mater. Sci., 2004, 49: 629
[13] Novikov I I, Grushko O E.Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys[J]. Mater. Sci. Technol., 1995, 11: 926
[14] Ding H, Fu H Z, Luo S Z, et al.Influence of composition on hot cracking tendency of directionally solidified Al-Cu alloy[J]. Acta Metall. Sin., 1995, 31: 376
[14] (丁浩, 傅恒志, 罗栓柱等. 化学成分对定向凝固Al-Cu合金热裂倾向的影响[J]. 金属学报, 1995, 31: 376)
[15] Cao G, Kou S.Hot cracking of binary Mg-Al alloy castings[J]. Mater. Sci. Eng., 2006, A417: 230
[16] Cao G, Kou S.Hot tearing of ternary Mg-Al-Ca alloy castings[J]. Metall. Mater. Trans., 2006, 37A: 3647
[17] Cao G, Haygood I, Kou S.Onset of hot tearing in ternary Mg-Al-Sr alloy castings[J]. Metall. Mater. Trans., 2010, 41A: 2139
[18] Zhen Z S, Hort N, Utke O, et al.Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method [A]. Magnesium Technology[M]. San Francisco, California, USA: Wiley, 2009: 105
[19] Zhou L.Investigations on hot tearing susceptibility and mechanism of Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
[19] (周乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011)
[20] Zhang S B.Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[20] (张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014)
[21] Unsworth W.New magnesium alloy for automobile applications[J]. Light Met. Age, 1987, 45: 10
[22] Chen X Q, Liu J W, Luo C P.Research status and development trend of Mg-Zn alloys with high strength[J]. Mater. Rev., 2008, 22(5): 58
[22] (陈晓强, 刘江文, 罗承萍. 高强度Mg-Zn系合金的研究现状与发展趋势[J]. 材料导报, 2008, 22(5): 58)
[23] Li X.Precipitation behavior of cast ZC62 magnesium alloy [D]. Guangzhou: South China University of Technology, 2006
[23] (李萧. 铸造ZC62镁合金显微组织与力学性能的研究 [D]. 广州: 华南理工大学, 2006)
[24] Li X, Liu J W, Luo C P.Precipitation behavior of cast ZC62 magnesium alloy[J]. Acta Metall. Sin., 2006, 42: 733
[24] (李萧, 刘江文, 罗承萍. 铸造ZC62镁合金的时效行为[J]. 金属学报, 2006, 42: 733)
[25] Zhao C.Study on microstructures and properties of Mg-Zn-Cu-Ce alloys [D]. Chongqing: Chongqing University, 2012
[25] (赵冲. Mg-Zn-Cu-Ce合金组织与性能研究 [D]. 重庆: 重庆大学, 2012)
[26] Zhu H M.A study of the aging behavior, microstructures and mechanical properties of cast Mg-6Zn-xCu-0.6Zr (x=0-2.0) alloys [D]. Guangzhou: South China University of Technology, 2011
[26] (朱红梅. Mg-6Zn-xCu-0.6Zr (x=0-2.0)铸造镁合金的时效行为、显微组织及力学性能研究 [D]. 广州: 华南理工大学, 2011)
[27] Unsworth W.New magnesium alloy for automobile applications[J]. Light Met. Age, 1987, 8: 10
[28] Shankar S, Riddle Y W, Makhlouf M M.Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys[J]. Acta Mater., 2004, 52: 4447
[29] Huang Z H, Zhao H, Lv L Q, et al.Thermal analysis and its application[J]. Hot Working Technol., 2010, 39(7): 19
[29] (黄张洪, 赵惠, 吕利强等. 热分析技术及其应用[J]. 热加工工艺, 2010, 39(7): 19)
[30] Liu Z, Zhang S B, Mao P L, et al.Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys[J]. Mater. Sci. Technol., 2014, 30: 1214
[31] Dahle A K, Stjohn D H.Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification[J]. Acta Mater., 1998, 47: 31
[32] Hou D H.Solidification path, dendrite growth restriction factor and grain size of cast Mg-Al-Zn alloy [D]. Dalian: Dalian University of Technology, 2015
[32] (侯丹辉. 铸造Mg-Al-Zn系合金的凝固路径、枝晶生长约束因子及晶粒尺寸 [D]. 大连: 大连理工大学, 2015)
[33] Zheng L J, Wang C H, Hou L Z, et al.Effect of equal-channel angular pressing on microstructure and mechanical properties of AM50 magnesium alloy[J]. Chin. J. Rare Met., 2005, 29: 615
[33] (郑立静, 王春晖, 侯亮卓等. 热加工对铸造AM50镁合金显微结构和力学性能的影响[J]. 稀有金属, 2005, 29: 615)
[34] Liu C F.Research on microstructures and mechanical properties of Mg-Zn-Cu alloys [D]. Shenyang: Northeastern University, 2013
[34] (刘长富. Mg-Zn-Cu合金显微组织和力学性能研究 [D]. 沈阳: 东北大学, 2013)
[35] Wang Z, Song J F, Huang Y D, et al.An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions[J]. Metall. Mater. Trans., 2015, 46A: 2108
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.