Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 907-917    DOI: 10.11900/0412.1961.2016.00480
  本期目录 | 过刊浏览 |
新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控
陈懿, 郭明星(), 易龙, 袁波, 李高洁, 庄林忠, 张济山
北京科技大学新金属材料国家重点实验室 北京 100083
Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet
Yi CHEN, Mingxing GUO(), Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet[J]. Acta Metall Sin, 2017, 53(8): 907-917.

全文: PDF(2082 KB)   HTML
摘要: 

通过OM、SEM、TEM观察以及EBSD和力学性能测试等手段研究了不同热加工工艺对Al-Mg-Si-Cu-Zn合金板材组织、织构和成形性能,以及固溶淬火后等温时效对其析出行为的影响规律。结果表明,2种热加工工艺对T4P预时效态合金的强度和应变硬化指数n基本无影响,但是对平均塑性应变比r?、Δr以及不同方向延伸率影响显著;不同热加工过程对合金组织和织构演化均有影响,成形性能较好的固溶淬火态合金板材平均晶粒尺寸略大且呈双模型晶粒尺寸分布特征,其织构组分较多,但是强度较低。对该淬火态合金进行185 ℃人工时效20 min,其硬度即可升高65 HV,进一步时效到5 h达到峰值硬度132 HV,对应的拉伸性能可达Rp=318 MPa,Rm=364 MPa,A=13%,拉伸断口为典型的塑性断裂。该合金在185 ℃时效时仍以Mg-Si相析出为主,如β"β' 和Q'相等,峰时效后β"相主要沿b轴方向生长,最后转化为β' 和Q'相,合金表现出较好的时效稳定性。

关键词 Al-Mg-Si-Cu-Zn合金热加工织构成形性能沉淀析出    
Abstract

To reduce the weight of car body, Al-Mg-Si-Cu series alloys have been widely used to produce outer body panels of automobiles due to their favorable high-strength-to-weight ratio, corrosion resistance and good formability. Moreover, the strength of Al-Mg-Si-Cu series alloys can be enhanced by artificial ageing treatments. However, their formability and final strengths still need to be further improved compared to steels, which are the major obstacles to wide-scale application of aluminum in the automotive fields. In this work, both the effect of different thermomechanical processes on formability, microstructure and texture of Al-Mg-Si-Cu-Zn alloy, and the influence of ageing treatment on its precipitation behavior were studied through mechanical property tests, OM, SEM, TEM and EBSD measurements. The results reveal that both the strengths and strain-hardening component n value of the T4P treated alloys are not affected by the two thermomechanical processes, but the r?, Δr and elongations in the different directions are significantly affected. The microstructure and texture evolution of the alloy in the two thermomechanical processes are different from each other. Both the microstructure of a little coarser and bi-modal grain size distribution, and the texture characteristics of much more components but with quite lower intensities can be seen in the solution treated alloy sheet which possesses a better formability after the T4P treatment. The hardness increment of 65 HV can be achieved in the quenched alloy after artificial ageing treatment of 185 ℃, 20 min. And then the peak-ageing state can be obtained after ageing 5 h, the hardness, yield strength, ultimate tensile strength and elongation, are as follows, 132 HV, 318 MPa, 364 MPa and 13%, respectively, and ductile fracture is the main fracture feature as observed by SEM examination of fracture surface. Mg-Si precipitates, such as β", β' and Q' phases, are still the main precipitates formed after artificial aging at 185 ℃, and β" phases mainly grow along its b axis and finally transform into β' and Q' phases, which is the main reason for the observed better ageing stability during long time artificial ageing treatment.

Key wordsAl-Mg-Si-Cu-Zn alloy    thermomechanical processing    texture    formability    precipitation
收稿日期: 2016-10-27     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目No.2016YFB0300801,国家自然科学基金项目Nos.51301016和51571023,国家高技术研究发展计划项目No.2013AA032403,北京自然科学基金项目No.2172038
作者简介:

作者简介 陈 懿,男,1990年生,硕士生

图1  工艺I和II处理后的T4P态Al-Mg-Si-Cu-Zn合金沿不同方向的工程应力-应变曲线
Processing Direction / (o) r r? Δr n n? A / % Rp / MPa Rm / MPa
I 0 0.638 0.585 0.020 0.306 0.308 30.48 134.4 276.5
45 0.575 0.307 28.54 133.9 273.1
90 0.551 0.311 26.64 132.7 270.0
II 0 0.726 0.654 -0.031 0.304 0.309 30.28 133.5 277.7
45 0.670 0.311 27.42 131.5 272.9
90 0.551 0.312 30.15 130.4 270.3
表1  工艺I和II处理后的Al-Mg-Si-Cu-Zn合金板材T4P态沿不同方向的力学性能
图2  工艺I和II处理后的Al-Mg-Si-Cu-Zn合金组织演化过程的OM像
图3  工艺I和II处理后的中间退火态Al-Mg-Si-Cu-Zn合金SEM像及EDS分析
图4  工艺I和II处理的冷轧态合金板材的ODF图
图5  工艺I和II处理的固溶态合金板材对应的EBSD晶粒取向和尺寸分布图
图6  工艺I和II对固溶态合金板材经固溶处理后沿轧向(φ1=0°,Φ=90°,φ2=0°)的ODF图
Component Processing I Processing II
Intensity Volume fraction Intensity Volume fraction
CubeND{001}<310> 5.62 16.80% - -
Cube{001}<100> 1.94 6.60% 4.23 5.10%
Goss{011}<100> 1.80 2.63% 1.04 1.15%
P{011}<122> 1.06 4.71% 0.75 2.94%
Q{013}<231> 1.46 13.40% 1.15 12.20%
R{124}<211> 1.14 9.22% 1.12 11.50%
H{100}<011> 1.56 3.72% 1.11 2.91%
Brass{011}<211> - - 1.03 4.03%
S{123}<634> - - 1.54 9.85%
表2  不同热加工工艺处理后固溶态合金再结晶织构组分强度及其体积分数
图7  工艺II处理的固溶态合金板材再经185 ℃时效后的硬度变化规律以及峰时效态应力-应变曲线
图8  工艺II处理的固溶态合金板材再经185 ℃时效5 h后峰时效态拉伸断口的SEM像和EDS分析
图9  经工艺II处理的固溶态合金板材再经185 ℃时效不同时间后的HRTEM像
[1] Engler O, Hirsch J. Recrystallization textures and plastic anisotropy in Al-Mg-Si sheet alloys [J]. Mater. Sci. Forum, 1996, 217-222: 479
[2] Bennett T A, Petrov R H, Kestens L A I, et al. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 63: 461
[3] Troeger L P, Starke Jr E A. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al-Mg-Si-Cu alloy[J]. Mater. Sci. Eng., 2000, 293A: 19
[4] Guo M X, Sha G, Cao L Y, et al.Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition[J]. Mater. Chem. Phys., 2015, 162: 15
[5] Peng X Y, Guo M X, Wang X F, et al.Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169(彭祥阳, 郭明星, 汪小锋等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169)
[6] Esmaeili S, Lloyd D J, Poole W J.A yield strength model for the Al-Mg-Si-Cu alloy AA6111[J]. Acta Mater., 2003, 51: 2243
[7] Hirth S M, Marshall G J, Court S A, et al. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016 [J]. Mater. Sci. Eng., 2001, A319-321: 452
[8] Esmaeili S, Lloyd D J.Effect of composition on clustering reactions in AlMgSi(Cu) alloys[J]. Scr. Mater., 2004, 50: 155
[9] Gupta A K, Lloyd D J.Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry[J]. Metall. Mater. Trans., 1999, 30A: 879
[10] Cao L F, Rometsch P A, Couper M J.Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A[J]. Mater. Sci. Eng., 2013, A571: 77
[11] Wolverton C.Solute-vacancy binding in aluminum[J]. Acta Mater., 2007, 55: 5867
[12] Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys[J]. Acta Mater., 2014, 78: 245
[13] Ding X P, Cui H, Zhang J X, et al.The effect of Zn on the age hardening response in an Al-Mg-Si alloy[J]. Mater. Des., 2015, 65: 1229
[14] Yan L Z, Zhang Y A, Li X W, et al.Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 97
[15] Cai Y H, Wang C, Zhang J S.Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy[J]. Int. J. Miner. Metall. Mater., 2013, 20: 659
[16] Saito T, Wenner S, Osmundsen E, et al.The effect of Zn on precipitation in Al-Mg-Si alloys[J]. Philos. Mag., 2014, 94: 2410
[17] Fukui S, Kudo H.The earing in deep-drawing and a directionality in tension-test of sheet metal[J]. Rep. Inst. Sci. Technol. Univ. Tokyo, 1950, 4: 33
[18] Lankford W T, Snyder S C, Bauscher J A.New criteria for predicting the press performance of deep drawing sheets[J]. Trans. ASM, 1950, 42: 1197
[19] Inoue H, Takasugi T.Texture control for improving deep drawability in rolled and annealed aluminum alloy sheets[J]. Mater. Trans., 2007, 48: 2014
[20] Wang X F, Guo M X, Chapuis A, et al.The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing[J]. Mater. Sci. Eng., 2015, A633: 46
[21] Liu W C, Man C S, Morris J G.Lattice rotation of the cube orientation to the β fiber during cold rolling of AA 5052 aluminum alloy[J]. Scr. Mater., 2001, 45: 807
[22] Lücke K, Engler O.Effects of particles on development of microstructure and texture during rolling and recrystallisation in fcc alloys[J]. Mater. Sci. Technol., 1990, 6: 1113
[23] Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
[24] Engler O, Lücke K.Mechanisms of recrystallization texture formation in aluminium alloys[J] Scr. Metall. Mater., 1992, 27: 1527
[25] Kashihara K, Inagaki H.Effect of precipitation on development of recrystallization texture in a 6061 aluminum alloy[J]. Mater. Trans., 2009, 50: 528
[26] Engler O, Yang P, Kong X W.On the formation of recrystallization textures in binary Al-1.3%Mn investigated by means of local texture analysis[J]. Acta Mater., 1996, 44: 3349
[27] Ding L P, Jia Z H, Zhang Z Q, et al.The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions[J]. Mater. Sci. Eng., 2015, A627: 119
[28] Li Y, Guo M X, Jiang N, et al.Precipitation behaviors and preparation of an advanced Al-0.93Mg-0.78Si-0.20Cu-3.00Zn alloy for automotive application[J]. Acta Metall. Sin., 2016, 52: 191(李勇, 郭明星, 姜宁等. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究[J]. 金属学报, 2016, 52: 191)
[29] Wolverton C.Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Mater., 2001, 49: 3129
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[9] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[11] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[12] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[13] 朱亮, 郭明星, 袁波, 庄林忠, 张济山. 时效路径对Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金沉淀析出行为的影响[J]. 金属学报, 2020, 56(7): 997-1006.
[14] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[15] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.