Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 861-868    DOI: 10.11900/0412.1961.2016.00569
  本期目录 | 过刊浏览 |
热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变
赵宁1(),邓建峰1,钟毅1,殷录桥2
1 大连理工大学材料科学与工程学院 大连 116024
2 上海大学新型显示技术及应用集成教育部重点实验室 上海 200072
Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering
Ning ZHAO1(),Jianfeng DENG1,Yi ZHONG1,Luqiao YIN2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China
引用本文:

赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
Ning ZHAO, Jianfeng DENG, Yi ZHONG, Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. Acta Metall Sin, 2017, 53(7): 861-868.

全文: PDF(1251 KB)   HTML
  
摘要: 

研究了240 ℃,温度梯度为1045 ℃/cm的热迁移条件下Cu含量对Ni/Sn-xCu/Ni (x=0.3、0.7、1.5,质量分数,%)微焊点钎焊界面反应的影响。结果表明,在热迁移过程中微焊点发生了界面金属间化合物(IMC)的非对称生长和转变以及Ni基体的非对称溶解。在Ni/Sn-0.3Cu/Ni微焊点中,虽然界面IMC类型始终为初始的(Ni, Cu)3Sn4,但出现冷端界面IMC厚度明显大于热端的非对称生长现象。在Ni/Sn-0.7Cu/Ni和Ni/Sn-1.5Cu/Ni微焊点中,界面IMC类型逐渐由初始的(Cu, Ni)6Sn5转变为(Ni, Cu)3Sn4,且出现冷端滞后于热端的非对称转变现象;Ni/Sn-1.5Cu/Ni微焊点冷、热端发生IMC转变的时间均滞后于Ni/Sn-0.7Cu/Ni微焊点。通过分析微焊点冷、热端界面IMC生长所需Cu和Ni原子通量,确定Cu和Ni的热迁移方向均由热端指向冷端。微焊点中的Cu含量显著影响主热迁移元素的种类,进而影响冷、热端界面IMC的生长和转变规律。此外,热迁移促进了热端Ni原子向钎料中的扩散,加速了热端Ni基体的溶解,溶解到钎料中的Ni原子大部分迁移到冷端并参与界面反应。相反,热迁移显著抑制了冷端Ni原子的扩散,因此冷端Ni基体几乎不溶解。

关键词 Sn-xCu钎料热迁移微焊点界面反应金属间化合物    
Abstract

The effect of Cu content on the evolution of intermetallic compounds (IMCs) in Ni/Sn-xCu/Ni (x= 0.3, 0.7, 1.5, mass fraction, %) micro solder joints during soldering at 240 ℃ under a temperature gradient of 1045 ℃/cm was investigated. Asymmetrical growth and transformation of interfacial IMCs and asymmetrical dissolution of Ni substrate were clearly observed. In Ni/Sn-0.3Cu/Ni micro solder joints, though the interfacial IMC remained as the initial (Ni, Cu)3Sn4, asymmetrical IMC growth between cold and hot ends occurred, i.e., the (Ni, Cu)3Sn4 IMC at the cold end was obviously thicker than that at the hot end. In Ni/Sn-0.7Cu/Ni and Ni/Sn-1.5Cu/Ni micro solder joints, the interfacial IMC gradually transformed from the initial (Cu, Ni)6Sn5 into (Ni,Cu)3Sn4. Meanwhile, the transformation at the cold end lagged behind the hot end, namely asymmetrical transformation phenomenon occurred. Moreover, the transformations at the cold and hot ends in the Ni/Sn-1.5Cu/Ni micro solder joints both lagged behind those in the Ni/Sn-0.7Cu/Ni micro solder joints. Based on the analysis of the Cu and Ni atomic fluxes for the IMC growth at both cold and hot ends, the thermomigration (TM) direction was confirmed to be from the hot end towards the cold end. The Cu concentration in the micro solder joints had a significant effect on the main TM element, and thus affected the growth and transformation behavior of the interfacial IMCs at the two ends. In addition, TM promoted the diffusion of Ni atoms into solder at the hot end, which accelerated the dissolution of the hot end Ni substrate. Most of the dissolved Ni atoms migrated to the cold end and participated in interfacial reaction locally. On the contrary, TM inhibited the diffusion of Ni atoms at the hot end, resulting in no obvious dissolution of the cold end Ni substrate.

Key wordsSn-xCu solder    thermomigration    micro solder joint    interfacial reaction    intermetallic compound
收稿日期: 2016-12-22     
基金资助:国家自然科学基金项目No.51675080和新型显示技术及应用集成教育部重点实验室开放基金项目No.P201601
图1  Ni/Sn-xCu/Ni微焊点及热迁移实验装置示意图
图2  微焊点液态钎料层的温度分布模拟结果
图3  浸焊后Ni/Sn-xCu/Ni微焊点微观组织的SEM像
图4  Ni/Sn-0.3Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图5  Ni/Sn-0.7Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图6  Ni/Sn-1.5Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图7  热迁移过程中Ni/Sn-xCu/Ni微焊点冷、热端界面金属间化合物(IMC)厚度随时间的变化
图8  Ni/Sn-xCu/Ni微焊点热台回流时Cu、Ni原子通量示意图
[1] Chen C, Hsiao H Y, Chang Y W, et al.Thermomigration in solder joints[J]. Mater. Sci. Eng., 2012, R73: 85
[2] Ouyang F Y, Jhu W C.Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect[J]. J. Appl. Phys., 2013, 113: 043711
[3] Guo M Y, Lin C K, Chen C, et al.Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints[J]. Intermetallics, 2012, 29: 155
[4] Huang A T, Gusak A M, Tu K N, et al.Thermomigration in SnPb composite flip chip solder joints[J]. Appl. Phys. Lett., 2006, 88: 141911
[5] Ouyang F Y, Jhu W C, Chang T C.Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits[J]. J. Alloys Compd., 2013, 580: 114
[6] Wang B, Wu F S, Wu Y P, et al.Microstructural evolution of the intermetallic compounds in the high density solder interconnects with reduced stand-off heights[J]. Solder. Surf. Mt. Technol., 2011, 23: 229
[7] Li X P, Zhou M B, Xia J M, et al.Effect of the cross-interaction on the formation and evolution of intermetallic compounds in Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA structure solder joints[J]. Acta Metall. Sin., 2011, 47: 611
[7] (李勋平, 周敏波, 夏建民等. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA焊点界面IMC形成与演化的影响[J]. 金属学报, 2011, 47: 611)
[8] Zhao N, Zhong Y, Huang M L, et al.Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient[J]. Sci. Rep., 2015, 5: 13491
[9] Gu X, Yung K C, Chan Y C, et al.Thermomigration and electromigration in Sn8Zn3Bi solder joints[J]. J. Mater. Sci. Mater. Electron., 2011, 22: 217
[10] Chen W Y, Chiu T C, Lin K L, et al.Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint[J]. Intermetallics, 2012, 26: 40
[11] Zhao N, Deng J F, Zhong Y, et al.Abnormal intermetallic compound evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni micro solder joints under thermomigration[J]. J. Electron. Mater., 2017, 46: 1931
[12] Zhao N, Pan X M, Ma H T, et al.Study of the liquid structure of Sn-Cu solders[J]. Acta Metall. Sin., 2008, 44: 467
[12] (赵宁, 潘学民, 马海涛等. Sn-Cu钎料液态结构的研究[J]. 金属学报, 2008, 44: 467)
[13] Chen W T, Ho C E, Kao C R.Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders[J]. J. Mater. Res., 2002, 17: 263
[14] Chiu M Y, Wang S S, Chuang T H.Intermetallic compounds formed during interfacial reactions between liquid Sn-8Zn-3Bi solders and Ni substrates[J]. J. Electron. Mater., 2002, 31: 494
[15] Ho C E, Tsai R Y, Lin Y L, et al.Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni[J]. J. Electron. Mater., 2002, 31: 584
[16] Chen W T, Ho C E, Kao C R.Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders[J]. J. Mater. Res., 2002, 17: 263
[17] Chen S W, Wang C H.Interfacial reactions of Sn-Cu/Ni couples at 250 ℃[J]. J. Mater. Res., 2006, 21: 2270
[18] Peralta-Martinez M V, Wakeham W A. Thermal conductivity of liquid tin and indium[J]. Int. J. Thermophys., 2001, 22: 395
[19] Yu D Q, Wu C M L, He D P, et al. Effects of Cu contents in Sn-Cu solder on the composition and morphology of intermetallic compounds at a solder/Ni interface[J]. J. Mater. Res., 2005, 20: 2205
[20] Zhao N, Zhong Y, Huang M L, et al.Dissolution and precipitation kinetics of Cu6Sn5 intermetallics in Cu/Sn/Cu micro interconnects under temperature gradient[J]. Intermetallics, 2016, 79: 28
[21] Qu L, Zhao N, Ma H T, et al.In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction[J]. J. Appl. Phys., 2014, 115: 204907
[22] Yang Y S, Yang C J, Ouyang F Y.Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration[J]. J. Alloys Compd., 2016, 674: 331
[23] Zhao N, Zhong Y, Huang M L, et al.In situ study on interfacial reactions of Cu/Sn-9Zn/Cu solder joints under temperature gradient[J] J. Alloys Compd., 2016, 682: 1
[24] Laurila L, Vuorinen V, Kivilahti J K.Analyses of interfacial reactions at different levels of interconnection[J]. Mater. Sci. Semicond. Proc., 2004, 7: 307
[25] Wang C H, Lai W H, Chen S W.Dissolution and interfacial reactions of (Cu,Ni)6Sn5 intermetallic compound in molten Sn-Cu-Ni solders[J]. J. Electron. Mater., 2014, 43: 195
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[13] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[14] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.