Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 406-414    DOI: 10.11900/0412.1961.2016.00257
  本期目录 | 过刊浏览 |
凹坑深度对铝合金表面在不同润滑介质中摩擦学性能的影响
马明明,连峰(),臧路苹,项秋宽,张会臣
大连海事大学交通运输装备与海洋工程学院 大连 116026
Effect of Dimple Depth on Friction Properties of Aluminum Alloy Under Different Lubrication Conditions
Mingming MA,Feng LIAN(),Luping ZANG,Qiukuan XIANG,Huichen ZHANG
College of Transportation Equipments and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
引用本文:

马明明,连峰,臧路苹,项秋宽,张会臣. 凹坑深度对铝合金表面在不同润滑介质中摩擦学性能的影响[J]. 金属学报, 2017, 53(4): 406-414.
Mingming MA, Feng LIAN, Luping ZANG, Qiukuan XIANG, Huichen ZHANG. Effect of Dimple Depth on Friction Properties of Aluminum Alloy Under Different Lubrication Conditions[J]. Acta Metall Sin, 2017, 53(4): 406-414.

全文: PDF(2760 KB)   HTML
摘要: 

采用激光刻蚀技术在5083船用铝合金表面分别构建出深度为15和30 μm的圆台形凹坑织构,利用涂覆SiO2和低表面能修饰改变表面润湿性,制备超疏水且疏油的双疏表面。采用HSR-2M高速往复摩擦试验机测试其在水、海水和油介质中的摩擦学性能。结果表明,凹坑深度为30 μm的表面的双疏性能强于凹坑深度15 μm的表面,摩擦学性能也更优。与单纯的织构表面相比,将织构和化学组分相结合的双疏表面可以更加显著地提高摩擦学性能。双疏表面在油介质中的摩擦系数和磨损量最小,在海水中的摩擦系数小于在水中,磨损量大于在水中。仿真计算结果表明,随着圆台形凹坑深度的增大,润滑膜承载力先增大后减小。当凹坑深度为75 μm时润滑膜承载力最大。研究结果表明,双疏表面可以显著提高铝合金在润滑介质中的摩擦学性能。

关键词 铝合金凹坑双疏表面润滑摩擦学性能    
Abstract

Notable properties of aluminum alloy such as high strength-to-weight ratio, easy to be recycled and good welding properties lead to a wide range of applications in marine industry. However, in addition to many advantages, there are also a lot obvious shortcomings in tribological properties. Especially, the passive state film of aluminum alloy could be destroyed by the Cl- in seawater and harsh marine environment, which can erode into the defects and then aggravate the friction behavior, and limit the use of aluminum alloy in the field of marine engineering. In recent years, the super-hydrophobic surfaces are gaining a wide application prospects in the field of marine engineering due to their properties of drag reduction, anti-adhesion and anti-corrosion abilities. In order to improve the tribological properties of aluminum alloy, the amphiphobic aluminum alloy surface is constructed through building dimple of cone frustum texture with depths of 15 and 30 μm on the surface of 5083 warship aluminum alloy by laser processing and changing the surface wettability by coating the nano-SiO2 powders and low surface energy modification. And the tribological performance was examined by high speed reciprocating friction test machine (HSR-2M) in the water/seawater/oil lubrication respectively. The test results show that the surface with dimple depth of 30 μm has stronger amphiphobic performance and tribological performance than that of 15 μm. Compared with the simple texture surface, the amphiphobic surface with both texture and chemical composition can improve the tribological performance significantly. The friction coefficient and the wear loss of amphiphobic surface are minimal in oil. The friction coefficient of amphiphobic surface in seawater is smaller than that in water while the wear loss of the former is bigger. The simulation results showed that the carrying capacity of the lubricating film increases first and then decreases as the increment of the dimple depth. The carrying capacity of the lubricating film is the biggest when the depth of cone frustum was 75 μm. It can be concluded that the amphiphobic surface can significantly improve the tribological properties of aluminum alloy in different lubrications.

Key wordsaluminum alloy    dimple    amphiphobic    lubrication    tribological property
收稿日期: 2016-06-27     
基金资助:国家自然科学基金项目Nos.51275064和50975036,中央高校基本科研业务费专项资金项目No.3132016354及辽宁省工业公关计划项目No.2012220006
图1  激光刻蚀 5083铝合金表面织构的三维形貌
图2  激光刻蚀不同深度凹坑的横截面形貌
Droplet Polishing Vacancy Low energy With SiO2
hp=15 μm hp=30 μm hp=15 μm hp=30 μm hp=15 μm hp=30 μm
Water 71.8 <5 <5 149.1 154..8 158.4 160.7
Sea water 65.3 <5 <5 131.3 144.2 147.1 153.8
Oil 53.3 <5 <5 108.3 114.6 120.4 125.2
表1  试样对不同液滴的接触角
图3  圆台形凹坑织构模型
图4  空白试样和抛光试样在不同介质中的摩擦系数
图5  双疏表面在不同介质中的摩擦系数
图6  摩擦副截面示意图
Lubricant Polishing Vacancy Low energy With SiO2
hp=15 μm hp=30 μm hp=15 μm hp=30 μm hp=15 μm hp=30 μm
Water 0.714 0.654 0.616 0.631 0.587 0.534 0.496
Sea water 0.687 0.631 0.578 0.610 0.550 0.492 0.448
Oil 0.190 0.164 0.139 0.142 0.125 0.112 0.097
表2  试样在不同润滑介质中的摩擦系数平均值
Lubricant Polishing Vancacy Low energy With SiO2
hp=15 μm hp=30 μm hp=15 μm hp=30 μm hp=15 μm hp=30 μm
Water 2.510 2.424 2.357 2.281 2.113 2.065 1.983
Sea water 2.696 2.568 2.395 2.317 2.204 2.116 2.012
Oil 0.355 0.254 0.228 0.223 0.206 0.197 0.182
表3  试样在不同润滑介质中的磨损量
图7  水介质中不同深度凹坑的无量纲润滑膜压力分布图
图8  凹坑深度对不同介质中无量纲润滑膜平均压力的影响
[1] Zhang X M, Deng Y L, Zhang Y.Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metall. Sin., 2015, 51: 257
[1] (张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51: 257)
[2] Kim S J, Jang S K, Han M S, et al.Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 636
[3] Hu J, Tang Y G, Li S X.Vibration test and assessment for an ocean drilling rig derrick: Taking the ZJ50/3150DB drilling rig as an example[J]. Petrol. Exp. Dev., 2013, 40: 126
[4] Figueroa R, Abeu C M, Cristóbal M J, et al. Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy [J]. Wear, 2012, 276-277: 53
[5] Zou Y S, Zhou K, Wu Y F, et al.Structure, mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J]. Vacuum, 2012, 86: 1141
[6] Shi H Y, Long Y N, Jiang B L, et al.Effect of sublayer on the structures and tribological properties of GLC coating on Al-based alloy[J]. Acta Metall. Sin., 2012, 48: 983
[6] (时惠英, 龙艳妮, 蒋百灵等. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48: 983)
[7] Barati N, Meletis E I, Golestani Fard F, et al.Al2O3-ZrO2 nanostructured coatings using DC plasma electrolytic oxidation to improve tribological properties of Al substrates[J]. Appl. Surf. Sci., 2015, 356: 927
[8] Zhou H, Shan H Y, Tong X, et al.The adhesion of bionic non-smooth characteristics on sample surfaces against parts[J]. Mater. Sci. Eng., 2006, A417: 190
[9] Hu T C, Hu L T.The study of tribological properties of laser-textured surface of 2024 aluminium alloy under boundary lubrication[J]. Lubr. Sci., 2012, 24: 84
[10] Scaraggi M, Mezzapesa F P, Carbone G, et al.Friction properties of lubricated laser-microtextured-surfaces: An experimental study from boundary- to hydrodynamic-lubrication[J]. Tribol. Lett., 2013, 49: 117
[11] Liew K W, Kok C K, Ervina Efzan M N. Effect of EDM dimple geometry on friction reduction under boundary and mixed lubrication[J]. Tribol. Int., 2016, 101: 1
[12] Burton Z, Bhushan B.Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces[J]. Ultramicroscopy, 2006, 106: 709
[13] Qin L G, Zhao W J, Hou H, et al.Achieving excellent anti-corrosion and tribological performance by tailoring the surface morphology and chemical composition of aluminum alloys[J]. RSC Adv., 2014, 4: 60307
[14] Wang H Y, Yan L, Gao D, et al.Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319: 62
[15] Shan L, Wang Y X, Li J L, et al.Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater[J]. Surf. Coat. Technol., 2013, 226: 40
[16] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[17] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
[18] Wen S Z.Study on lubrication theory-progress and thinking-over[J]. Tribology, 2007, 27: 497
[18] (温诗铸. 润滑理论研究的进展与思考[J]. 摩擦学学报, 2007, 27: 497)
[19] Yu H, Deng H, Huang W, et al.The effect of dimple shapes on friction of parallel surfaces[J]. Proc. Inst. Mech. Eng., 2010, 225: 693
[20] Uman A, Park C W.Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: Warm operating conditions[J]. Tribol. Int., 2016, 99: 224
[21] Yoshimitsu T, Nakajima H, Nagaoka H.Synthesis of the CD ring system of paclitaxel by atom-transfer radical annulation reaction[J]. Tetrahedron Lett., 2002, 43: 8587
[22] Navier C L. Memoire sur les lois du mouvement des fluides [J]. Mém. Acad. Roy. Sci., 1823, 6: 389
[23] Kunert C, Harting J.Simulation of fluid flow in hydrophobic rough microchannels[J]. Int. J. Comput. Fluid Dyn., 2008, 22: 475
[24] Wang L, Yan C P, Wang Q D, et al.Study on the tribological properties of the amphiphobic textured metal surface[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci. Ed.), 2012, 40(Suppl. II): 21
[24] (王莉, 严诚平, 王权岱等. 金属微结构双疏表面的摩擦特性研究[J]. 华中科技大学学报(自然科学版), 2012, 40(Suppl.II): 21)
[25] Wang J H, Song M, Li J L, et al.The preparation and tribological properties of water-soluble nano-silica particales[J]. Tribology, 2011, 31: 118
[25] (王建华, 宋敏, 李金龙等. 水溶性纳米二氧化硅添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2011, 31: 118)
[26] Liu N, Wang J Z, Chen B B, et al.Tribochemical aspects of silicon nitride ceramic sliding against stainless steel under the lubrication of seawater[J]. Tribol. Int., 2013, 61: 205
[27] Chen J, Yan F Y.Tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1356
[28] Osman M M.Corrosion inhibition of aluminium-brass in 3.5%NaCl solution and sea water[J]. Mater. Chem. Phys., 2001, 71: 12
[29] Ding H Y, Zhou G H, Hui D.Friction and wear performance of an aluminium alloy in artificial seawater[J]. Proc. Inst. Mech. Eng., 2011, 225: 43
[30] Liu T, Liu T, Chen S G, et al.Corrosion resistance improvement of aluminum in seawater by super-hydrophobic surfaces[J]. Chin. J. Inorg. Chem., 2008, 24: 1859
[30] (刘通, 刘涛, 陈守刚等. 超疏水表面改善铝基材料的抗海水腐蚀性能[J]. 无机化学学报, 2008, 24: 1859)
[31] Liu T, Chen S G, Cheng S, et al.Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochim. Acta, 2007, 52: 8003
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[14] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[15] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.