Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 684-694    DOI: 10.11900/0412.1961.2016.00495
  本期目录 | 过刊浏览 |
一种高硼定向凝固合金的初熔行为及其对力学性能的影响
张洪伟1,2,秦学智2,李小武1,周兰章2()
1 东北大学材料科学与工程学院材料物理与化学系 沈阳110819
2 中国科学院金属研究所 沈阳110016
Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content
Hongwei ZHANG1,2,Xuezhi QIN2,Xiaowu LI1,Lanzhang ZHOU2()
1 Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(19817 KB)   HTML  
  
摘要: 

系统研究了高硼DZ444定向凝固合金的初熔行为及其对力学性能的影响。结果表明,在铸态合金中,枝晶间包含大量γ/γ′共晶、MC碳化物和由硼化物、Ni5Hf及η相组成的“团聚相”。在固溶处理期间,团聚相周围受硼化物显著影响的γ基体首先发生初熔。硼化物不是初熔的形核点,但是对初熔的形成具有关键作用。较高的B含量,使得合金具有较低的初熔温度,介于1160~1170 ℃之间,明显低于正常合金。提升温度或延长保温时间,初熔现象变得更加严重。采用水淬方式,初熔倾向于凝固为典型的γ枝晶和大量细小的沉淀相颗粒;而采用空冷方式时,初熔依次凝固为团聚相、γ基体和γ/γ′共晶相,团聚相形貌与铸态时没有明显差异。完整热处理时,固溶温度由1210 ℃提升到1230 ℃,初熔略微增加,而当温度达1250 ℃时,初熔区尺寸和面积分数剧烈增大,对合金造成严重破坏。由于温度较低,合金的高、低温时效对初熔组织影响不是很大。随着初熔区尺寸和面积分数增加,初熔区消耗了大量的固溶强化元素,同时初熔区内部易萌生大量微裂纹,从而使合金的拉伸性能稍有下降,持久性能显著降低。

关键词 定向凝固高温合金固溶处理初熔团聚相力学性能    
Abstract

A new directionally solidified Ni-based superalloy is developed for industrial gas turbine applications, which has high strength and excellent hot corrosion resistance at high temperatures. The high strength of the alloy is primarily derived from precipitation hardening by ordered L12 γ′ phase. To achieve a uniform distribution of precipitated γ′ particles for optimized mechanical properties, the suitable heat treatments are used. However, the heat treatment temperature in Ni-based superalloys is limited by the problem of incipient melting. Incipient melting microstructrue evolution during heat treatment has been hardly reported. Therefore, the behaviors of incipient melting and its effect on mechanical properties in the new directionally solidified superalloy DZ444 with high boron have been investigated in this work. The results show that some interdendritic regions of the as-cast DZ444 sample exhibit many of γ′/γ eutectic, MC carbides and multi-phase eutectic-like constituent which are composed of boride, Ni5Hf and η phases. During solution treatments, incipient melting does not occur in boride or Ni5Hf phase with low melting point firstly, but appears in γ matrix around multi-phase eutectic-like constituent which is affected significantly by borides. Compared to DZ444 alloy with the normal boron content, incipient melting occurs at the lower temperature in the range between 1160 ℃ and 1170 ℃. Incipient melting can occur significantly with the increase of the solid solution temperature or time. Incipient melting consists of typical γ dentrites and a lot of tiny precipitation particles after the water quenching (WQ) method following solution treatment. However, incipient melting forms multi-phase eutectic-like constituent, γ matrix and γ′/γ eutectic successively during air cooling (AC) following solution treatment, and the morphology of multi-phase eutectic-like constituent is similar to that of as-cast alloy. Firstly, a so-called incipiently melted circle (IMC) forms around multi-phase eutectic-like constituent; with the increase of the solid solution temperature or time, IMC extends inwards which makes γ matrix and multi-phase eutectic-like constituent in this circle melt successively. Finally, a incipiently melted pool forms gradually. Incipient melting is limited to the IMC below 1200 ℃ and the area of incipient melting changes with temperature or time correspondingly. However, incipiently melted region (IMR) expands outwards continuously which makes γ matrix outside the incipiently melted circle melt when the temperature is higher than 1210 ℃. Especially, IMR swallows up plenty of γ matrix, and many matrix islands, regions unmelted, exist in IMR above 1250 ℃ which destroys the continuity of the matrix significantly. The incipient melting has a minor effect on the tensile properties, nevertheless, decreases the creep-rupture properties remarkably. The degradation of mechanical properties mainly results from the increasing of the incipient melting area fraction and size.

Key wordsdirectionally solidified superalloy    solid solution treatment    incipient melting    multi-phase eutectic-like constituent    mechanical property
收稿日期: 2016-11-07      出版日期: 2017-04-01
基金资助:国家自然科学基金项目No.51001101 和国家高技术研究发展计划项目No.2012AA03A501

引用本文:

张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content. Acta Metall, 2017, 53(6): 684-694.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00495      或      http://www.ams.org.cn/CN/Y2017/V53/I6/684

图1  高硼DZ444合金的典型铸态组织
图2  团聚相形貌的BSE像和元素面分布
Phase Al Ti Cr Co Ni Mo Hf Ta W
MC(1) 0.6 47.9 2.0 1.2 6.5 7.0 3.3 0.2 31.3
MC(2) 0.6 12.4 4.2 2.9 13.4 2.5 48.4 4.4 11.1
η 3.1 8.9 4.2 7.5 63.3 0.6 8.9 1.5 1.9
Boride(1) 0.2 2.2 42.1 3.4 10.2 15.9 0 0 26.1
Boride(2) 0.3 2.7 23.8 2.9 11.6 18.6 1.0 0 39.2
Ni5Hf 0.7 2.6 3.7 8.0 56.3 0.8 18.9 5.9 3.1
表1  铸态合金中“团聚相”的化学成分
图3  高硼DZ444合金在1170 ℃保温不同时间+水淬处理后初熔区SEM像
图4  高硼DZ444合金在不同温度保温不同时间+水淬后初熔区SEM像
图5  高硼DZ444合金在不同温度保温不同时间+水淬后的初熔区SEM像
图6  高硼DZ444 合金在不同温度保温不同时间+空冷后的初熔区SEM像
图7  不同固溶处理后初熔区的SEM像(使用的腐蚀液为电解液B)
图8  不同固溶处理后初熔区的SEM像(使用的腐蚀液为电解液A)
Solution temperature / ℃ Area fraction / % Size / μm
1210 5.3 49.8
1230 7.1 52.0
1250 18.6 88.5
表2  热处理时固溶温度对初熔的影响
图9  固溶和高温时效后的初熔区组织
Heat treatment Tensile property Stress-rupture property
σb / MPa σ0.2 / MPa δ / % φ / % t / h δ / %
HT1 707 457 29.8 40.3 55 30.6
HT2 690 460 27.3 35.0 44 27.8
HT3 665 447 24.5 32.3 22 13.5
表3  不同热处理制度下高硼DZ444合金在900 ℃下的拉伸性能及930 ℃、275 MPa下的持久性能
图10  性能测试过程中裂纹在初熔区域形成的SEM像
[8] Baldan A.Electron microprobe investigation of lower melting regions in the as-cast structure of DS200+Hf single crystal[J]. J. Mater. Sci., 1990, 25: 4341
doi: 10.1007/BF00581093
[9] Ojo O A, Zhang H R.Analytical electron microscopy study of Boron-Rich grain boundary microconstituent in directionally solidified Rene 80 superalloy[J]. Metall. Mater. Trans., 2008, 39A: 2799
doi: 10.1007/s11661-008-9646-7
[10] Sidhu R K, Ojo O A, Chaturvedi M C.Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment[J]. J. Mater. Sci., 2008, 43: 3612
doi: 10.1007/s10853-008-2575-4
[11] Zheng Y R.Incipient melting and its control in a directionally solidified nickel-base superalloy DZ22[J]. Acta Aeronaut. Astronaut. Sin., 1986, 7: 482
[11] (郑运荣. DZ22定向高温合金的初熔及其控制[J]. 航空学报, 1986, 7: 482)
[12] Zheng Y R, Cai Y L, Wang L B.Factors influenced incipient melting in Hf-bearing DS Ni-base superalloys[J]. Acta Metall. Sin., 1983, 19: A190
[12] (郑运荣, 蔡玉林, 王罗宝. 影响含Hf定向凝固合金初熔的某些因素[J]. 金属学报, 1983, 19: A190)
[13] Chen R Z, Wang L B, Wang Y P.Influence of solution temperature on microstructure and properties of directionally solidified super-alloy DZ22[J]. Acta Aeronaut. Astronaut. Sin., 1988, 9: A368
[13] (陈荣章, 王罗宝, 王玉屏. 固溶温度对定向凝固高温合金DZ22的组织和性能的影响[J]. 航空学报, 1988, 9: A368)
[14] Jahangiri M R, Boutorabi S M A, Arabi H. Study on incipient melting in cast Ni base IN939 superalloy during solution annealing and its effect on hot workability[J]. Mater. Sci. Technol., 2012, 28: 1402
doi: 10.1179/1743284712Y.0000000090
[15] Guo J T.Materials Science and Engineering for Superalloys (Book 3) [M]. Beijing: Science Press, 2008: 3
[15] (郭建亭. 高温合金材料学(下册) [M]. 北京: 科学出版社, 2008: 3)
[16] Versnyder F I, Shank M E.The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Mater. Sci. Eng., 1970, A6: 213
doi: 10.1016/0025-5416(70)90050-9
[17] Zheng Y R, Zhang D T.Color Metallographic Investigation of Superalloys and Steels [M]. Beijing: National Defense Industry Press, 1999: 141
[17] (郑运荣, 张德堂. 高温合金与钢的彩色金相研究 [M]. 北京: 国防工业出版社, 1999: 141)
[18] Zhao Y S, Zhang J, Luo Y S, et al.Effects of Hf and B on high temperature low stress creep behavior of a second generation Ni-based single crystal superalloy DD11[J]. Mater. Sci. Eng., 2016, A672: 143
doi: 10.1016/j.msea.2016.06.079
[19] Caldwell E C, Fela F J, Fuchs G E.The segregation of elements in high-refractory-content single-crystal nickel-based superalloys[J]. JOM, 2004, 56(9): 44
doi: 10.1007/s11837-004-0200-9
[20] Collier J P, Keefe P W, Tien J K.The effects of replacing the refractory elements W, Nb and Ta with Mo in nickel-base superalloys on microstructural, microchemistry, and mechanical properties[J]. Metall. Trans., 1986, 17A: 651
doi: 10.1007/BF02643984
[21] Huang Y Y, Mao Z G, Noebe R D, et al.The effects of refractory elements on Ni-excesses and Ni-depletions at γ(f.c.c.)/γ’(L12) interfaces in model Ni-based superalloys: Atom-probe tomographic experiments and first-principles calculations[J]. Acta Mater., 2016, 121: 288
[22] Zhang Z L, Ma J B, Dai Y B, et al.Effects of refractory elements on the structure and dynamics of molten Ni: An ab initio molecular dynamics study[J]. Comp. Mater. Sci., 2013, 77: 254
doi: 10.1016/j.commatsci.2013.04.005
[23] Ma Y Q, Yu X F, Sun W R.Study on the initial melting characteristics of γ+γ’ eutectics in K417G alloy and influencing factors[J]. Foundry, 2014, 63: 185
[23] (马亚芹, 于兴福, 孙文儒. K417G合金γ+γ’共晶初熔特性及影响因素研究[J]. 铸造, 2014, 63: 185)
doi: 10.3969/j.issn.1001-4977.2014.02.016
[24] Liang Y J, Li J, Li A, et al.Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions[J]. Scr. Mater., 2017, 127: 58
doi: 10.1016/j.scriptamat.2016.08.039
[25] Wang H F, Su H J, Zhang J, et al.Effect of melt thermal history on solidification behavior and microstructural characteristics of a third-generation Ni-based single crystal superalloy[J]. J. Alloys Compd., 2016, 688: 430
doi: 10.1016/j.jallcom.2016.07.031
[26] Shi Z X, Dong J X, Zhang M C, et al.Solidification characteristics and segregation behavior of Ni-based superalloy K418 for auto turbocharger turbine[J]. J. Alloys Compd., 2013, 571: 168
doi: 10.1016/j.jallcom.2013.03.241
[1] Zhang J, Zhang A B, Tan Y N, et al.Effect of Re on microstructure and properties of directionally solidified superalloy[J]. J. Aeronaut. Mater., 2010, 30(3): 24
[1] (张俊, 张爱斌, 谭永宁等. Re对定向凝固Ni基高温合金组织及性能的影响[J]. 航空材料学报, 2010, 30(3): 24)
doi: 10.3969/j.issn.1005-5053.2010.3.006
[2] Zhou P J, He X M.Influences of minor alloying elements on the eutectic volume of Ni-Base superalloy[J]. Foundry, 2012, 61: 868
[2] (周鹏杰, 何向明. 微量元素对镍基高温合金共晶数量的影响[J]. 铸造, 2012, 61: 868)
doi: 10.3969/j.issn.1001-4977.2012.08.005
[3] Ojo O A, Richards N L, Chaturvedi M C.On incipient melting during high temperature heat treatment of cast Inconel 738 superalloy[J]. J. Mater. Sci., 2004, 39: 7401
doi: 10.1023/B:JMSC.0000048761.32712.eb
[27] Zhang Y J, Huang Y J, Yang L, et al.Evolution of microstructures at a wide range of solidification cooling rate in a Ni-based superalloy[J]. J. Alloys Compd., 2013, 570: 70
doi: 10.1016/j.jallcom.2013.03.085
[28] Wang F, Ma D, Zhang J, et al.Effect of solidification parameters on the microstructures of superalloy CMSX-6 formed during the downward directional solidification process[J]. J. Cryst. Growth, 2014, 389: 47
doi: 10.1016/j.jcrysgro.2013.11.084
[29] Zheng Y R, Cai Y L.Phase transformations in hafnium-bearing cast nickel-base superalloys [A]. Superalloys[C], 1980: 465
[4] Seo S M, Kim I S, Lee J H, et al.Eta phase and Boride formation in directionally solidified Ni-base superalloy IN792+Hf[J]. Metall. Mater. Trans., 2007, 38A: 883
doi: 10.1007/s11661-007-9090-0
[5] Shulga A V.Boron and carbon behavior in the cast Ni-base superalloy EP962[J]. J. Alloys Compd., 2007, 436: 155
doi: 10.1016/j.jallcom.2006.07.051
[6] Wu B P, Li L H, Wu J T, et al.Effect of boron addition on the microstructure and stress-rupture properties of directionally solidified superalloys[J]. Int. J. Miner. Metall. Mater., 2014, 21: 1120
doi: 10.1007/s12613-014-1017-3
[7] Zhen B L, Zhang S J.The phase composition and the rules of the phase precipitation in Hf-bearing nickel base superalloys[J]. Cent. Iron Steel Res. Inst. Tech. Bull., 1981, (1): 65
[7] (甄宝林, 张绍津. 加铪镍基合金相的组成和析出规律[J]. 钢铁研究总院学报, 1981, (1): 65)
[1] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[2] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[3] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[4] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[5] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[6] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[7] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[8] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[9] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[10] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[11] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[12] 于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
[13] 孟帅举,余晖,张慧星,崔红卫,王志峰,赵维民. Bi添加对挤压纯Mg组织和力学性能的影响*[J]. 金属学报, 2016, 52(7): 811-820.
[14] 王文辉,吴迪,陈荣石,娄长胜. 高温短时间时效处理对Mg-3Nd-1Zn合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 567-574.
[15] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.