Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 335-344    DOI: 10.11900/0412.1961.2016.00284
  本期目录 | 过刊浏览 |
塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究
张晓嵩1,徐勇1,2,3(),张士宏1,程明1,赵永好2,唐巧生3,丁月霞3
1 中国科学院金属研究所 沈阳 110016
2 南京理工大学材料科学与工程学院 南京 210016
3 江苏华阳金属管件有限公司 镇江 212400
Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel
Xiaosong ZHANG1,Yong XU1,2,3(),Shihong ZHANG1,Ming CHENG1,Yonghao ZHAO2,Qiaosheng TANG3,Yuexia DING3
1 Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials and Engineering, Nanjing University of Science and Technology, Nanjing 210016, China
3 Jiangsu Huayang Metal Pipes Co. Ltd., Zhenjiang 212400, China
引用本文:

张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
Xiaosong ZHANG, Yong XU, Shihong ZHANG, Ming CHENG, Yonghao ZHAO, Qiaosheng TANG, Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. Acta Metall Sin, 2017, 53(3): 335-344.

全文: PDF(6124 KB)   HTML
摘要: 

研究了固溶处理制度对不同变形量下的AISI 304奥氏体不锈钢晶间腐蚀性能的影响规律。采用室温单向拉伸实验获取了不同变形量下的AISI 304不锈钢试样,通过XRD测量了其中由于形变诱发的马氏体相的含量,采用电化学动电位再活化法(EPR)研究了固溶处理温度及时间对不同变形量下AISI 304不锈钢晶间腐蚀的影响。实验结果表明,AISI 304不锈钢晶间腐蚀程度随着变形量的增加而提高,而随着固溶处理温度和时间的增加而降低。其原因是由于AISI 304不锈钢形变诱发马氏体相变行为所引起的微观组织变化及其导致的固溶处理初期C元素的偏聚在不同固溶条件下的回复程度不同,从而对后续晶间腐蚀性能产生显著影响。

关键词 奥氏体不锈钢塑性变形马氏体相变固溶处理敏化度晶间腐蚀    
Abstract

AISI 304 austenite stainless steel was applied extensively in the modern industry due to its good properties on mechanics and corrosion resistance. However, there is severe intergranular corrosion when the AISI 304 was working at the temperature 420~850 ℃ called sensitizing temperature. This phenomenon was more obvious with increase of strain. In addition, this effect can not be removed completely even with the heat treatment subsequently. In present work, the influence of solution treatment and plastic deformation on the intergranular corrosion property of AISI 304 was investigated. The specimens subjected to different strain were obtained by the uniaxial tensile tests at room temperature. XRD was used to measure the fraction of martensitic phase which was induced by deformation. Optical metal lographic microscope was applied to observe the evolution of microstructure. The influence of various deformation values, solution temperature and holding time on intergranular corrosion was quantitative analyzed by electrochemical potentiodynamic reactivation (EPR) method. Experimental results showed that the degree of the intergranular corrosion increased with the increase of deformation, and with the decrease of solution temperature and holding time. It is indicated that since the solubility of carbon in martensite and austenite is discrepant, the content of carbon in the grains recrystallized is discrepant too. The more martensite is transformed, the more chromium carbide is formed in the grain boundary after sensitization. This phenomenon causes poor intergranular corrosion resistance due to the lack of chromium. In addition, the carbon segregation which is caused by plastic deformation will relieve with the rise of solution temperature and holding time. It is because that the carbon atom is more active at higher temperature, and the distribution of carbon is more homogeneous with the extended holding time. Then the quantity of chromium carbide will decrease in solution treatment process. Consequently the chromium depletion will be mitigated. From the above, a uniform solution treatment condition is not suitable for austenite stainless steel with the effect of martensitic transformation in cold working. Flexible scheme can be employed to insure better combination property of products.

Key wordsaustenite stainless steel    plastic deformation    martensitic transformation    solution treatment    sensitization    intergranular corrosion
收稿日期: 2016-07-05     
基金资助:国家自然科学基金项目No.51304186及中国博士后科学基金项目No.2016M590454
图1  热处理工艺示意图
图2  不同变形量下304不锈钢的XRD谱和马氏体相含量
γ (fcc) α' (bcc) ε (hcp)
[hkl] (sinθ)/λ f [hkl] (sinθ)/λ f [hkl] (sinθ)/λ f
[111] 2.4099 17.55 [110] 2.4571 17.39 [100] 2.2726 18.00
[200] 2.7681 16.37 [200] 3.4724 14.51 [101] 2.5772 17.00
[220] 3.9324 13.46 [211] 4.2574 12.86 [102] 3.3325 14.84
[311] 4.6086 12.27 [220] 4.8263 11.90
表1  AISI 304不锈钢在X射线下的原子散射系数
图3  敏化度在EPR曲线上的读取及计算方法
γ (fcc) α' (bcc) ε (hcp)
[hkl] P [hkl] P [hkl] P
[111] 8 [110] 12 [100] 6
[200] 6 [200] 6 [101] 12
[220] 12 [211] 24 [102] 12
[311] 24 [220] 12
表2  AISI 304不锈钢中各相的多重性因子
γ (fcc) α' (bcc) ε (hcp)
[hkl] 2θ / (°) DWF [hkl] 2θ / (°) DWF [hkl] 2θ / (°) DWF
[111] 43.6 0.963 [110] 44.5 0.961 [100] 41.0 0.967
[200] 50.5 0.951 [200] 64.7 0.925 [101] 46.8 0.958
[220] 74.6 0.904 [211] 82.0 0.889 [102] 61.8 0.930
[311] 90.5 0.871 [220] 96.1 0.860
表3  AISI 304不锈钢的Debye-Waller 因子
图4  不同变形量下试样的极化曲线
图5  不同固溶温度和时间下试样的敏化度
图6  固溶温度1000 ℃、0.5 h的不同变形量试样的OM像
图7  1000 ℃固溶0.5 h、650 ℃敏化2 h后试样在不同变形量下的OM像
图8  变形量为30%、不同固溶时间和温度的试样OM像
图9  变形量为30%,不同时间和温度固溶处理后的EPR试样OM像
[1] Li Z J, Chen X R, Sun Q Q, et al.Recent research and prospect of duplex stainless steel[J]. Foundry Technol., 2011, 32: 1320
[1] (李志军, 陈湘茹, 孙卿卿等. 双相不锈钢的研究与发展[J]. 铸造技术, 2011, 32: 1320)
[2] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
[3] Xu Y, Zhang S H, Song H W, et al.The enhancement of transformation induced plasticity effect on austenitic stainless steels by cyclic tensile loading and unloading[J]. Mater. Lett., 2011, 65: 1545
[4] Ahn T H, Oh C S, Kim D H, et al.Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation[J]. Scr. Mater., 2010, 63: 540
[5] Wang L N, Yang P, Mao W M.Analysis of martensitic transformation during tension of high manganese trip steel at high strain rates[J]. Acta Metall. Sin., 2016, 52: 1045
[5] (王丽娜, 杨平, 毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析[J]. 金属学报, 2016, 52: 1045)
[6] Liu D X.Corrosion and Protection of Materials [M]. Xi'an: Northwestern Polytechnical University Press, 2005: 145
[6] (刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2005: 145)
[7] Yu X F, Chen S H, Liu Y, et al.A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back-scattering diffraction and cellular automaton[J]. Corros. Sci., 2010, 52: 1939
[8] Jha A K, Sreekumar K.Intergranular corrosion of a stud used in safety relief valve[J]. Eng. Fail. Anal., 2009, 16: 1379
[9] Chowdhury S G, Singh R.The influence of recrystallized structure and texture on the sensitization behaviour of a stable austenitic stainless steel (AISI 316L)[J]. Scr. Mater., 2008, 58: 1102
[10] Sidhom H, Amadou T, Sahlaoui H, et al.Quantitative evaluation of aged AISI 316L stainless steel sensitization to intergranular corrosion: comparison between microstructural electrochemical and analytical methods[J]. Metall. Mater. Trans., 2007, 38A: 1269
[11] Kina A Y, Souza V M, Tavares S S M et al. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service[J]. Mater. Charact., 2008, 59: 651
[12] Luo H, Gong M.On intergranular corrosion of austenitic stainless steel[J]. Corros. Sci. Protect. Technol., 2006, 18: 357
[12] (罗宏, 龚敏. 奥氏体不锈钢的晶间腐蚀[J]. 腐蚀科学与防护技术, 2006, 18: 357)
[13] Zhang G Y, Wu Q F.Influence of solution treatment temperature on sensitization of 304 austenitic stainless steel[J]. Corros. Protect., 2012, 33: 695
[13] (张根元, 吴晴飞. 固溶处理温度对304奥氏体不锈钢敏化与晶间腐蚀的影响[J]. 腐蚀与防护, 2012, 33: 695)
[14] Sun X Y, Liu X G, Wang L L, et al.Influence of solution annealing on intergranular corrosion resistance of 316L stainless steel[J]. Corros. Sci. Protect. Technol., 2014, 26: 228
[14] (孙小燕, 刘孝光, 汪列隆等. 固溶处理对316L不锈钢晶间腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2014, 26: 228)
[15] Garcia C, Martin F, De Tiedra P, et al.Effect of prior cold work on intergranular and transgranular corrosion in type 304 stainless steels: Quantitative discrimination by image analysis[J]. Corrosion, 2000, 56: 243
[16] Xu Y, Zhang S H, Cheng M, et al.Effect of loading modes on mechanical property and strain induced martensite transformation of austenitic stainless steels[J]. Acta Metall. Sin., 2013, 49: 775
[16] (徐勇, 张士宏, 程明等. 加载方式对奥氏体不锈钢力学性能和马氏体相变的影响[J]. 金属学报, 2013, 49: 775)
[17] Moser N H, Gross T S, Korkolis Y P.Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by X-ray diffraction[J]. Metall. Mater. Trans., 2014, 45A: 4891
[18] Xu Y, Zhang S H, Cheng M, et al.In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading[J]. Scr. Mater., 2012, 67: 771
[19] De A K, Murdock D C, Mataya M C, et al.Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scr. Mater., 2004, 50: 1445
[20] Smallmann R E, Ngan A H W. Physical Metallurgy and Advanced Materials[M]. 7th Ed., Amsterdam: Butterworth Heinemann, 2007: 414
[21] Fultz B, Hown J M.Transmission Electron Microscopy and Diffractometry of Materials[M]. 3rd Ed., Berlin: Springer, 2008: 119
[22] Petit B, Gey N, Cherkaoui M, et al.Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling[J]. Int. J. Plasticity, 2007, 23: 323
[23] Dong H L.The effect of deformation on microstructure and properties of 304 austenitic stainless steel [D]. Nanjing: Nanjing University of Science and Technology, 2010
[23] (董红亮. 变形量对304奥氏体不锈钢组织和性能的影响 [D]. 南京: 南京理工大学, 2010)
[24] Shi M T.Metal Material and Heat Treatment [M]. Shanghai: Shanghai Science and Technology Press, 1980: 28
[24] (史美堂. 金属材料及热处理 [M]. 上海: 上海科学技术出版社, 1980: 28)
[25] Lee S L, Riehards N L.The effect of single-step low strain and annealing of nickel on grain boundary character[J]. Mater. Sci. Eng., 2005, A390: 81
[26] Xu Z Y.Martensitic Transformation and Martensite [M]. 2nd Ed., Beijing: Science Press, 1999: 253
[26] (徐祖耀. 马氏体相变与马氏体 [M]. 第2版, 北京: 科学出版社, 1999: 253)
[27] Shimada M, Kokawa H, Wang Z J, et al.Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[7] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[8] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[9] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[12] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[13] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.