Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 298-306    DOI: 10.11900/0412.1961.2016.00379
  本期目录 | 过刊浏览 |
W对第三代镍基单晶高温合金组织稳定性的影响
王博,张军(),潘雪娇,黄太文,刘林,傅恒志
西北工业大学凝固技术国家重点实验室 西安 710072
Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys
Bo WANG,Jun ZHANG(),Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
Bo WANG, Jun ZHANG, Xuejiao PAN, Taiwen HUANG, Lin LIU, Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2017, 53(3): 298-306.

全文: PDF(6712 KB)   HTML
摘要: 

通过对3种不同W含量(6%、7%、8%,质量分数)的第三代镍基单晶高温合金铸态、热处理态和热暴露后的组织观察和成分分析,研究了W对元素偏析、热处理组织及热暴露过程中组织演化的影响。结果表明:W含量的提高对合金元素的铸态偏析、完全热处理后的γ′相形貌、尺寸和体积分数均无明显影响。在950 ℃热暴露过程中,W含量的提高抑制了γ′相的粗化,但加速了γ′相的连接变形。3种合金在热暴露过程中析出的TCP相主要为μ相和σ相,且TCP相析出量随W含量的增加而缓慢增大。此外,3种合金在1000 ℃热暴露时TCP相析出量最大,在950 ℃热暴露时次之,在1050 ℃热暴露时析出量最小。

关键词 镍基单晶高温合金组织稳定性Wγ′TCP相    
Abstract

Ni-based single crystal superalloys are widely used in the manufacture of aero engine turbine blades because of the excellent mechanical properties at high temperature. With the development of single crystal superalloys, the content of refractory elements is constantly increased (especially Re) to improve the high temperature capability, which in turn leads to the decrease in microstructural stability of alloys, such as the TCP phase precipitation. It is important to find one element which not only can maintain high temperature performance but also does not evidently promote TCP phase precipitation and is very cheap in price to replace Re partially. W is one of the most important solution strengthening elements in superalloys, its diffusion rate in Ni matrix is close to Re and far below the other alloying elements, meanwhile, the advantage of low price make it to be the most suitable substitute of Re. However, there is little work about the effect of W on microstructural stability in Re contained third generation superalloys. In this work, the effects of W on the elemental segregation, elemental partitioning ratio of γ /γ′, microstructure evolution and TCP phase precipitation during thermal exposure at 950, 1000 and 1050 ℃ have been investigated in a third generation Ni-based single crystal superalloys with varied contents of W (6%~8%, mass fraction). The results show that the addition of W has no obvious effect on segregation of the alloying elements of as-cast alloys as well as the morphology, size and volume fraction of γ′ phase after heat treatment. During the thermal exposure at 950 ℃, the connection and deformation of γ′ phase are accelerated, but its coarsening rate is decreased with increasing W content. The TCP phases precipitated in three alloys during thermal exposure are mainly μ phase and σ phase. The area fraction of TCP phases is increased slightly with the W addition during thermal exposure, which is the largest at 1000 ℃, less at 950 ℃ and the least at 1050 ℃.

Key wordsNi-based single crystal superalloy    microstructural stability    Wγ′ phase    TCP phase
收稿日期: 2016-08-22     
基金资助:国家高技术研究发展计划项目No.2012AA03A511,国家自然科学基金项目Nos.50931004和51331005及陕西省自然科学基金项目No.2014JM622
Alloy Al Ta Cr Mo Co Re W Ni
S1 5.69 8.04 4.24 2.05 8.36 4.03 5.92 Bal.
S2 5.68 7.95 4.21 2.03 8.55 4.10 6.97 Bal.
S3 5.66 7.94 4.26 2.01 8.43 4.09 8.07 Bal.
表1  3种实验合金的化学成分
图1  固溶处理前后合金元素偏析比
图2  3种合金经完全热处理后枝晶干处的γ′相形貌
图3  固溶和时效处理后合金元素在γ /γ′相中的分配比
图4  3种合金在950 ℃热暴露不同时间后枝晶干处的γ′相形貌
图5  3种合金在950 ℃热暴露不同时间时枝晶干处γ′相的尺寸和热暴露前200 h枝晶干处γ′相的粗化速率
图6  3种合金在不同温度热暴露1000 h后的枝晶干处TCP相形貌
图7  合金S1在1000 ℃下热暴露不同时间后析出的σ相和μ相的形貌及其衍射斑点
图8  合金S1、S2和S3在不同温度热暴露1000 h后所析出TCP相的面积分数
Alloy ST Sg ΔS
S1 31.00 35.93 4.93
S2 31.18 36.70 5.52
S3 31.70 39.43 7.73
表2  根据REN方法计算3种合金的ST、Sg和ΔS值
[1] Guo J T.The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metall. Sin., 2010, 46: 513
[1] (郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46: 513)
[2] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153
[2] (金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[3] Chen J Y, Zhao B, Feng Q, et al.Effects of Ru and Cr on γ /γ′ microstructural evolution of Ni-based single crystal superalloys during heat treatment[J]. Acta Metall. Sin., 2010, 46: 897
[3] (陈晶阳, 赵宾, 冯强等. Ru和Cr对镍基单晶高温合金γ /γ′热处理组织演变的影响[J]. 金属学报, 2010, 46: 897)
[4] Reed R C, Tao T, Warnken N.Alloys-By-Design: Application to nickel-based single crystal superalloys[J]. Acta Mater., 2009, 57: 5898
[5] Jin T, Wang W Z, Sun X F, et al. Role of rhenium in single crystal Ni-based superalloys [J]. Mater. Sci. Forum, 2010, 638-642: 2257
[6] Reed R C.The Superalloys [M]. New York: Cambridge University Press, 2006: 46
[7] Ma W Y, Han Y F, Li S S, et al.Effect of Mo content on the microstructure and stress rupture of a Ni base single crystal superalloy[J]. Acta Metall. Sin., 2006, 42: 1191
[7] (马文有, 韩雅芳, 李树索等. Mo含量对一种镍基单晶高温合金显微组织和持久性能的影响[J]. 金属学报, 2006, 42: 1191)
[8] Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy[J]. Metall. Mater. Trans., 2001, 32A: 2409
[9] Volek A, Pyczak F, Singer R F, et al.Partitioning of Re between γ and γ′ phase in nickel-base superalloys[J]. Scr. Mater., 2005, 52: 141
[10] Walston W S, O’Hara K S, Ross E W, et al. René N6: third generation single crystal superalloy [A]. Superalloys 1996[C]. Warrendale: TMS, 1996: 27
[11] Acharya M V, Fuchs G E.The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys[J]. Mater. Sci. Eng., 2004, A381: 143
[12] Fuchs G E.Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Mater. Sci. Eng., 2001, A300: 52
[13] Caron P.High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000[C]. Warrendale: TMS, 2000: 737
[14] Walston S, Cetel A, Mackay R, et al.Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004[C]. Warrendale: TMS, 2004: 15
[15] Sato A, Harada H, Yen A C, et al.A 5th generation scsuperalloy with balanced high temperature properties and processability [A]. Superalloys 2008[C]. Warrendale: TMS, 2008: 131
[16] Liu G, Liu L, Zhang S X, et al.Effects of Re and Ru on microstructure and segregation of Ni-based single-crystal superalloys[J]. Acta Metall. Sin., 2012, 48: 845
[16] (刘刚, 刘林, 张胜霞等. Re和Ru对镍基单晶高温合金组织偏析的影响[J]. 金属学报, 2012, 48: 845)
[17] Nathal M V, Ebert L J.The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys[J]. Metall. Trans., 1985, 16A: 1849
[18] Tian S G, Xia D, Li T, et al.Influence of element W and microstructure evolution on lattice parameters and misfits of nickel-base superalloys[J]. J. Aeronaut. Mater., 2008, 28(4): 12
[18] (田素贵, 夏丹, 李唐等. W含量及组织状态对镍基高温合金晶格常数及错配度的影响[J]. 航空材料学报, 2008, 28(4): 12)
[19] Sudbrack C K, Ziebell T D, Noebe R D, et al.Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni-Al-Cr superalloy[J]. Acta Mater., 2008, 56: 448
[20] Amouyal Y, Mao Z G, Seidman D N.Effects of tantalum on the partitioning of tungsten between the γ - and γ′-phases in nickel-based superalloys: Linking experimental and computational approaches[J]. Acta Mater., 2010, 58: 5898
[21] Zheng Y R.Development and application of low Cr and high W content cast nickel based superalloys in China[J]. J. Aeronaut. Mater., 2003, 23(S1): 227
[21] (郑运荣. 我国低Cr高W系列铸造镍基高温合金的发展与应用[J]. 航空材料学报, 2003, 23(S1): 227)
[22] Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys[J]. Acta Mater., 2001, 49: 4113
[23] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[24] Pyczak F, Devrient B, Neuner F C, et al.The influence of different alloying elements on the development of the γ /γ′ microstructure of nickel-base superalloys during high-temperature annealing and deformation[J]. Acta Mater., 2005, 53: 3879
[25] Kablov E N, Petrushin N V.Designing of high-rhenium single crystal Ni-base superalloy for gas turbine blades [A]. Superalloys 2008[C]. Warrendale: TMS, 2008: 901
[26] Van der Molen E H, Oblak J M, Kriege O H. Control of γ′ particle size and volume fraction in the high temperature superalloy Udimet 700[J]. Metall. Trans., 1971, 2: 1627
[27] Giamei A F, Aanton D L.Rhenium additions to a Ni-base superalloy: Effects on microstructure[J]. Metall. Trans., 1985, 16A: 1997
[28] Murphy H J, Sims C T, Beltran A M.PHACOMP revisited[J]. J. Metals, 1968, (11): 46
[29] Morinaga M, Yukawa N, Adachi H, et al.New PHACOMP and its applications to alloy design [A]. Superalloys 1984[C]. Warrendale: TMS, 1984: 523
[30] Chen Z Q, Han Y F, Zhong Z G, et al.New phase stability prediction method of nickel base single crystal superalloys[J]. J. Aeronaut. Mater., 1998, 18(4): 13
[30] (陈志强, 韩雅芳, 钟振纲等. 一种新的镍基单晶高温合金相稳定性预测方法[J]. 航空材料学报, 1998, 18(4): 13)
[31] Feng D, Qiu D R.Metal Phsics [M]. Beijing: Science Press, 1987: 109
[31] (冯端, 丘第荣. 金属物理学 [M]. 北京: 科学出版社,1987: 109)
[32] Sato A, Harada T, Yokokawa T, et al.The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scr. Mater., 2006, 54: 1679
[33] Cheng K Y, Jo C Y, Jin T, et al.Effect of Re on the precipitation behavior of μ phase in several single crystal superalloys[J]. J. Alloys Compd., 2012, 536: 7
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[4] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[5] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[6] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[7] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[8] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[9] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[10] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[11] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[12] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[13] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[14] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[15] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.