Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 751-759    DOI: 10.11900/0412.1961.2016.00464
  本期目录 | 过刊浏览 |
D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究
陶辉锦1,2(),周珊1,刘宇1,尹健3,许昊1
1 中南大学材料科学与工程学院 长沙 410083
2 中南大学有色金属材料科学与工程教育部重点实验室 长沙 410083
3 中南大学粉末冶金国家重点实验室 长沙 410083
Point Defect Concentrations and Interactions in D019-Ti3Al from First-Principles Calculations
Huijin TAO1,2(),Shan ZHOU1,Yu LIU1,Jian YIN3,Hao XU1
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Metal Materials Science and Engineering,Ministry of Education, Central South University, Changsha 410083, China
3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
Huijin TAO, Shan ZHOU, Yu LIU, Jian YIN, Hao XU. Point Defect Concentrations and Interactions in D019-Ti3Al from First-Principles Calculations[J]. Acta Metall Sin, 2017, 53(6): 751-759.

全文: PDF(2257 KB)   HTML
摘要: 

采用Wagner-Schottky点缺陷热力学模型和第一性原理平面波赝势方法,计算研究了D019-Ti3Al金属间化合物中空位和反位2种类型点缺陷的形成焓、平衡浓度及相互作用。结果表明,这些缺陷的平衡浓度均随温度升高而增大,反位缺陷浓度均高于空位缺陷,Ti原子空位的浓度高于Al原子空位。在理想化学计量比成分下,Ti原子反位与Al原子反位缺陷浓度基本相当;在略偏离计量比的富Ti成分端,Ti原子的反位缺陷浓度高于Al原子;在富Al成分端则情形相反。计算结果表明,3种点缺陷对(AlTi-TiAl、TiAl-TiAlVAl-AlTi)在基体中具有较强的聚集趋势,而其它类型的点缺陷对则有向基体扩散的趋势。

关键词 Ti3Al点缺陷形成焓第一性原理Wagner-Schottky模型    
Abstract

The intermetallics D019-Ti3Al has low specific density and high thermal resistance for both bulk and coating applications in engineering area. The point defects such as thermal vacancy, compostion vacancy and antisite defect have great influence on the properties of D019-Ti3Al, but are usally neglected. According to available research data from both theory and experiment, it is commonly considered that the thermal vacancies in D019-Ti3Al provide paths for atomic migration and diffusion, the antisite defects play an important role in the disordering of D019-Ti3Al, and the interaction between composition vacancy and antisite defect may have important influence on atomic diffusion and dislocation movement. So it is necessary to explore the mechanism of interaction between composition vacancy and antisite defect for more accurate understanding of the atomic diffusion, dislocation movement and plastic deform in D019-Ti3Al. In this work, the formation enthalpy, equilibrium concentration, and binding energy of composition vacancy and antisite defect in D019-Ti3Al intermetallics were calculated by using both the Wagner-Schottky model of point defect thermodynamics and the plane wave pseudopotential method in first-principles. Results suggest that, in the whole composition range of interest, the point defect concentrations increase with the increase of temperature. In particular, the concentrations of antisite defects are higher than those of vacancies, and the vacancy concentration of Ti is higher than that of Al. At the stoichiometric composition, the concentrations of antisite defects of Ti and Al are very close. At the Ti-rich side of component, the antisite defect of Ti dominates in concentration, while at the Al-rich side, that of Al dominates in concentration. For the calculated results of 3 types of point defect pairs, AlTi-TiAl, TiAl-TiAl and VAl-AlTi, they may have the strong trend to aggregate, while others may show the tend to diffuse into the matrix.

Key wordsTi3Al    point defect    formation enthalpy    first-principle    Wagner-Schottky model
收稿日期: 2016-10-20     
基金资助:国家自然科学基金项目Nos.51302322和21373273,中南大学贵重仪器设备开放共享基金项目Nos;CSUZC201708和CSUZC201613,中南大学教育改革项目 Nos.2016jy03和2016CLYJG02,广东省金属强韧化技术与应用重点实验室(广东省材料与加工研究所)开放课题No.GKL201605
图1  D019-Ti3Al金属间化合物空位和反位点缺陷晶胞模型示意图
图2  含有单个点缺陷的D019-Ti3Al形成焓与Al原子成分(xAl)之间的关系
Work HVAl HVTi HAlTi HTiAl
Present work 3.4272 1.9719 -0.2093 1.2416
Cal.[19] 1.5 1.5 0.6 0.6
Cal.[29] 2.76 3.15 0.54 0.16
Exp.[30] - 1.55 - -
表1  D019-Ti3Al金属间化合物空位和反位形成焓
图3  在不同温度下D019-Ti3Al金属间化合物的点缺陷浓度与成分之间的关系
图4  理想化学计量比D019-Ti3Al点缺陷浓度与温度的关系
图5  D019-Ti3Al金属间化合物点缺陷浓度(c)与温度(T -1)之间的关系
图6  D019-Ti3Al中第一、第二和第三近邻VAl-VTi点缺陷对的晶胞模型示意图
Temperature Q?VAl Q?VTi Q?AlTi Q?TiAl
800~1500 K 1.489 0.762 0.511 0.511
800~1200 K 0.866 0.139 0.513 0.513
1200~1500 K 2.944 2.218 0.508 0.508
Cal.[18] 1.805 1.314 0.313 0.313
Exp.[18] 1.55
表2  D019-Ti3Al中空位和反位缺陷形成激活能的实验值预测
Point defect pair
Hd-d' / eV Fd-d' / eV
First nearest Second nearest Third
nearest
First
nearest
Second nearest Third
nearest
VAl-VTi 5.5203 5.5045 5.9087 -0.1212 -0.1054 -0.5096
VAl-AlTi 3.1869 3.3116 3.4959 0.0310 -0.0937 -0.2780
VTi-TiAl 3.6256 3.5722 3.5010 -0.4121 -0.3587 -0.2875
AlTi-TiAl 0.8544 1.0014 1.0454 0.1779 0.0309 -0.0131
VAl-TiAl 4.8687 4.7788 4.9194 -0.1999 -0.1100 -0.2506
VTi-AlTi 2.0442 2.1019 1.9564 -0.2816 -0.3393 -0.1938
VAl-VAl 7.4272 7.4542 7.5333 -0.5728 -0.5998 -0.6789
VTi-VTi 4.4483 4.4546 4.3857 -0.5045 -0.5108 -0.4419
AlTi-AlTi -0.2922 -0.2903 -0.5427 -0.1264 -0.1283 0.1241
TiAl-TiAl 2.4479 2.5269 2.5390 0.0353 -0.0437 -0.0558
表3  D019-Ti3Al中最近邻点缺陷对的形成焓和结合能
[1] Tao H J, Sun S P, Zhang C C, et al.First principles study of point defect concentrations in L10-TiAl intermetallic composite[J]. Chin. J. Nonferrous Met., 2014, 24: 2789
[1] (陶辉锦, 孙顺平, 张铖铖等. 金属间化合物L10-TiAl点缺陷浓度的第一原理[J]. 中国有色金属学报, 2014, 24: 2789)
[2] Filimonov V Y, Korchagin M A, Dietenberg I A, et al.High temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture[J]. Powder Technol., 2013, 235: 606
[3] Liu Y L, Liu L M, Wang S Q, et al.First-principles study of shear deformation in TiAl and Ti3Al[J]. Intermetallics, 2007, 15: 428
[4] Liu Y L, Zhang L, Wang S Q, et al.Shear deformation in Ti3Al: Atomic, dynamic and static simulations[J]. Model. Simul. Mater. Sci. Eng., 2008, 16: 085008
[5] Yoo M H, Zou J, Fu C L. Mechanistic modeling of deformation and fracture behavior in TiAl and Ti3Al [J]. Mater. Sci. Eng., 1995, A192-193: 14
[6] Karkina L E, Yakovenkova L I.Dislocation core structure and deformation behavior of Ti3Al[J]. Model. Simul. Mater. Sci. Eng., 2012, 20: 065003
[7] Fu C L, Zou J, Yoo M H.Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3Al/TiAl interface by first-principles calculations[J]. Scr. Metall. Mater., 1995, 33: 885
[8] Wang L, Shang J X, Wang F H, et al.First principles study of α2-Ti3Al (0001) surface and γ-TiAl (111)/α2-Ti3Al (0001) interfaces[J]. Appl. Surf. Sci., 2013, 276: 198
[9] Xie Z C, Gao T H, Guo X T, et al.Molecular dynamics simulation of nanocrystal formation and deformation behavior of Ti3Al alloy[J]. Comput. Mater. Sci., 2015, 98: 245
[10] Piao Y X, Li W.Effect of Nb on valence electron structures and embrittlement of Ti3Al[J]. Chin. J. Rare Met., 2000, 24: 47
[10] (朴英锡, 李文. 铌对Ti3Al价电子结构及其脆性的影响[J]. 稀有金属, 2000, 24: 47)
[11] Chen C L, Lu W, Sun D, et al.Deformation-induced α2 →γ phase transformation in TiAl alloys[J]. Mater. Charact., 2010, 61: 1029
[12] Al-Kassab T, Yuan Y, Kluthe C, et al.Investigation of the ordering and atomic site occupancies of Nb-doped TiAl/Ti3Al intermetallics[J]. Surf. Interface Anal., 2007, 39: 257
[13] Wei Y, Zhou H B, Zhang Y, et al.Effects of O in a binary-phase TiAl-Ti3Al alloy: From site occupancy to interfacial energetic[J]. J. Phys.: Condens Matter, 2011, 23: 225504
[14] Zhang E L, Wang H W, Zeng S Y.Microstructure characteristics of in situ carbide reinforced titanium aluminide (Ti3Al) matrix Composites[J]. J. Mater. Sci. Lett., 2001, 20: 1733
[15] Bratanich T I, Skorokhod V V, Kopylova L I, et al.Ti3Al destructive hydrogenation[J]. Int. J. Hydrogen Energy, 2011, 36: 1276
[16] Rüsing J, Herzig C.Concentration and temperature dependence of titanium self-diffusion and interdiffusion in the intermetallic phase Ti3Al[J]. Intermetallics, 1996, 4: 647
[17] Shirai Y, Murakami T, Ogawa N, et al.Vacancies and their clusters in Ti3Al studied by positron lifetime spectrometry[J]. Intermetallics, 1996, 4: 31
[18] Mishin Y, Herzig C.Diffusion in the Ti-Al system[J]. Acta Mater., 2000, 48: 589
[19] Semenova O, Krachler R, Ipser H.Estimation of point defect formation energies in the D019-type intermetallic compound Ti3Al[J]. Solid State Sci., 2002, 4: 1113
[20] Fr?bel U, Appel F.Strain ageing in γ (TiAl)-based and α2 (Ti3Al) titanium aluminides[J]. Intermetallics, 2006, 14: 1187
[21] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[22] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[23] Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations[J]. Phys. Rev., 1976, 13B: 5188
[24] Bl?chl P E, Jepsen O, Andersen O K.Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev., 1994, 49B: 16223
[25] Novoselova T, Malinov S, Sha W, et al.High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy[J]. Mater. Sci. Eng., 2004, A371: 103
[26] Yoo M H, Fu C L.Physical constants, deformation twinning, and microcracking of titanium aluminides[J]. Metall. Mater. Trans., 1998, 29A: 49
[27] Wagner C, Schottky W.Theorie der geordneten Mischphasen[J]. Z. Phys. Chem., 1930, 11B: 163
[28] Sun S P, Li X P, Yu Y, et al.First-principle calculation of point defects concentration in L12-Al3Li intermetallic[J]. Chin. J. Nonferrous Met., 2013, 23: 370
[28] (孙顺平, 李小平, 于赟等. L12-Al3Li金属间化合物点缺陷浓度的第一原理计算[J]. 中国有色金属学报, 2013, 23: 370)
[29] Benedek R, van de Walle A, Gerstl S S A, et al. Partitioning of solutes in multiphase Ti-Al alloys[J]. Phys. Rev., 2005, 71B: 094201
[30] Würschum R, Kümmerle E A, Badura-Gergen K, et al.Thermal vacancy formation and positron-vacancy interaction in Ti3Al at high temperatures[J]. J. Appl. Phys., 1996, 80: 724
[31] Fu C L, Wang X D. The effect of electronic structure on the defect properties of FeAl [J]. Mater. Sci. Eng., 1997, A239-240: 761
[32] Parlinski K, Jochym P T, Kozubsk R, et al.Atomic modelling of Co, Cr, Fe, antisite atoms and vacancies in B2-NiAl[J]. Intermetallics, 2003, 11: 157
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[3] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[4] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[5] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[6] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[7] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[8] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[9] 盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
[10] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[11] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[12] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[13] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[14] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[15] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.