Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 797-807    DOI: 10.11900/0412.1961.2016.00530
  本期目录 | 过刊浏览 |
外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响
苑洪钟1,2,刘智勇1,2(),李晓刚1,2,3,杜翠薇1,2
1 北京科技大学腐蚀与防护中心 北京 100083
2 北京科技大学腐蚀与防护教育部重点实验室 北京 100083
3 中国科学院宁波材料技术与工程研究所 宁波 315201
Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment
Hongzhong YUAN1,2,Zhiyong LIU1,2(),Xiaogang LI1,2,3,Cuiwei DU1,2
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory of Corrosion and Protection of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
3 Material Technology and Engineering Research Institute of Ningbo, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(2760 KB)   HTML  
摘要: 

采用慢应变速率拉伸(SSRT)实验、动电位极化技术和SEM观察等方法,研究了X90钢基体和焊缝在近中性土壤模拟溶液中不同阴极保护电位下的应力腐蚀行为。结果表明,X90管线钢及其焊缝组织在近中性土壤模拟溶液中均具有一定的应力腐蚀敏感性,裂纹扩展为穿晶腐蚀裂纹;应力腐蚀开裂(SCC)的裂纹萌生与扩展与外加保护电位有关。在开路电位(OCP)~-1000 mV的电位范围内,X90钢的SCC机制均为阳极溶解(AD)+氢脆(HE)的混合机制;在OCP下,由于AD作用较强,SCC敏感性较明显;在-800 mV下,由于AD和HE作用均较弱,导致SCC敏感性最低;而在-900 mV时,由于HE作用明显增强,具有最高的SCC敏感性;在相同电位条件下,焊缝的SCC敏感性高于母材。

关键词 X90钢近中性土壤环境电化学行为应力腐蚀开裂    
Abstract

Pipe is the main mode of transportation of oil and gas contemporary, and its security and reliability has an important influence on the smooth development of regional economy and even the security situation. For decades, quite a number of researches have been mainly focusing on various factors on the stress corrosion cracking (SCC) of both high and middle strength pipeline steels in soil or underground water conditions, but the division of the sensitive potential ranges which determines the different SCC mechanisms was rarely reported. Soil environmental stress corrosion cracking (SCC) of pipeline steel in the process of service operation is one of the biggest security hidden dangers. The external environment SCC of pipeline steel mainly includes two modes, high pH SCC and close to neutral pH SCC. Between them, the high pH SCC occurred mainly in CO32-/HCO3- under the coating of liquid, the mechanism of cracking is widely regarded as membrane rupture, crack tip anodic dissolution mechanism; near neutral pH SCC occurred mainly in the coating containing low concentration of HCO3- resident fluid or groundwater environment. Due to pipe in the process of serving for a long time, pipeline external coating damage and strip defects are common, under the joint action of the applied potential and soil medium, SCC will generally occur in nearly neutral pH environment, which lead to a serious risk in nearly neutral pH SCC. As a new generation of high strength pipeline steel, the X90 steel probes into its SCC sensitivity at different applied potentials in a certain pH environment is of great significance. In this work, the SCC behavior as well as its mechanism of X90 pipeline steel and its weld joint in an simulated solution of the near neutral soil environment (NS4 solution) were studied by slow strain rate tensile tests (SSRT), potentiodynamic polarization tests and SEM observation of fracture surfaces. The results showed that both the as received X90 pipeline steel and its weld joint have obvious SCC susceptibilities, which initiated and extended in transgranular cracking mode under different applied potentials. Within the potential ranges from OCP to -1000 mV, the SCC mechanism of both X90 steel and its weld joint microstructures are a combined mechanisms of anodic dissolution (AD) and hydrogen embrittlement (HE), i.e. the AD+HE mechanism. The SCC susceptibility is apparent under the OCP due to a strong AD effect. At -800 mV, the SCC susceptibility comes to a minimum due to AD and HE being weaker, and it presents the highest SCC susceptibility at -900 mV because the HE effect was greatly enhanced. The SCC susceptibility of the weld organization is higher than that of the base metal, which may be related to organization phase transformation in the welds and metallurgical reaction.

Key wordsX90 pipeline steel    near neutral soil environment    electrochemical behavior    stress corrosion cracking
收稿日期: 2016-11-22      出版日期: 2017-02-28
基金资助:国家重点基础研究发展计划项目No.2014CB643300,国家自然科学基金项目Nos.51471034和51131001及中央高校基本科研业务费专项项目No.FRF-TP-15-047A3

引用本文:

苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment. Acta Metall, 2017, 53(7): 797-807.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00530      或      http://www.ams.org.cn/CN/Y2017/V53/I7/797

图1  X90管线钢焊接接头的显微组织形貌
图2  X90管线钢母材及焊缝的慢应变速率拉伸(SSRT)曲线
图3  X90钢母材和焊缝的延伸率损失系数Iδ和断面收缩率损失系数Iψ
图4  不同外加电位下X90钢母材SSRT断口组织形貌
图5  不同外加电位下X90钢焊缝SSRT断口组织形貌
图6  X90钢母材及其焊缝SSRT试样断口侧边SEM像
图7  X90钢母材及其焊缝试样在近中性土壤模拟溶液中不同外加电位下的SCC截面形貌
图8  X90钢母材和焊缝在近中性土壤模拟溶液中的快慢扫极化曲线
[1] Mohd M H, Paik J K.Investigation of the corrosion progress characteristics of offshore subsea oil well tubes[J]. Corros. Sci., 2013, 67: 130
doi: 10.1016/j.corsci.2012.10.008
[2] Caleyo F, Valor A, Alfonso L, et al.Bayesian analysis of external corrosion data of non-piggable underground pipelines[J]. Corros. Sci., 2015, 90: 33
doi: 10.1016/j.corsci.2014.09.012
[3] Dang D N, Lanarde L, Jeannin M, et al.Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection[J]. Electrochim. Acta, 2015, 176: 1410
doi: 10.1016/j.electacta.2015.07.097
[4] Wu T Q, Yan M C, Xu J, et al.Mechano-chemical effect of pipeline steel in microbiological corrosion[J]. Corros. Sci., 2016, 108: 160
doi: 10.1016/j.corsci.2016.03.011
[5] Liu Q L, Venezuela J, Zhang M X, et al.Hydrogen trapping in some advanced high strength steels[J]. Corros. Sci., 2016, 111: 770
doi: 10.1016/j.corsci.2016.05.046
[6] Liu Z Y, Li X G, Du C W, et al.Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment[J]. Corros. Sci., 2009, 51: 895
doi: 10.1016/j.corsci.2009.01.007
[7] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
doi: 10.1016/j.corsci.2013.11.037
[8] Liang P, Li X G, Du C W, et al.Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des., 2009, 30: 1712
doi: 10.1016/j.matdes.2008.07.012
[9] Yan M C, Xu J, Yu L B, et al.EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte[J]. Corros. Sci., 2016, 110: 23
[10] Javidi M, Horeh S B.Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel[J]. Corros. Sci., 2014, 80: 213
doi: 10.1016/j.corsci.2013.11.031
[11] Alamilla J L, Espinosa-Medina M A, Sosa E. Modelling steel corrosion damage in soil environment[J]. Corros. Sci., 2009, 51: 2628
doi: 10.1016/j.corsci.2009.06.052
[12] Xu L Y, Cheng Y F.An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J]. Corros. Sci., 2012, 59: 103
doi: 10.1016/j.corsci.2012.02.022
[13] Chen X, Li X G, Du C W, et al.Effect of cathodic protection on corrosion of pipeline steel under disbonded coating[J]. Corros. Sci., 2009, 51: 2242
doi: 10.1016/j.corsci.2009.05.027
[14] Yan M C, Sun C, Xu J, et al.Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment[J]. Corros. Sci., 2015, 93: 27
doi: 10.1016/j.corsci.2015.01.001
[15] Liu Z Y, Wang X Z, Du C W, et al.Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J]. Mater. Sci. Eng., 2016, A658: 348
doi: 10.1016/j.msea.2016.02.019
[16] Cui Z Y, Liu Z Y, Wang L W, et al.Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment[J]. Mater. Sci. Eng., 2016, A677: 259
doi: 10.1016/j.msea.2016.09.033
[17] Li M C, Cheng Y F.Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines[J]. Electrochim. Acta, 2007, 52: 8111
doi: 10.1016/j.electacta.2007.07.015
[18] Ma H C, Liu Z Y, Du C W, et al.Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros. Sci., 2015, 100: 627
doi: 10.1016/j.corsci.2015.08.039
[19] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
[20] Liu Z Y, Du C W, Li C, et al.Stress corrosion cracking of welded API X70 pipeline steel in simulated underground water[J]. J. Mater. Eng. Perform., 2013, 22: 2550
doi: 10.1007/s11665-013-0575-2
[21] Liu Z Y, Lu L, Huang Y Z, et al.Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water[J]. Corrosion, 2014, 70: 678
doi: 10.5006/1153
[22] Liu Z Y, Du C W, Zhang X, et al.Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 489
[23] Liu Z Y, Li X G, Du C W, et al.Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment[J]. Corros. Sci., 2008, 50: 2251
doi: 10.1016/j.corsci.2008.05.011
[24] Cheng Y F.Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines[J]. Electrochim. Acta, 2007, 52: 2661
doi: 10.1016/j.electacta.2006.09.024
[25] Liu Z Y, Cui Z Y, Li X G, et al.Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization[J]. Electrochem. Commun., 2014, 48: 127
doi: 10.1016/j.elecom.2014.08.016
[26] Liu Z Y, Li X G, Du C W, et al.Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution[J]. Corros. Sci., 2009, 51: 2863
doi: 10.1016/j.corsci.2009.08.019
[27] Liu Z Y, Wang C P, Du C W, et al.Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution[J]. Acta Metall. Sin., 2011, 47: 1434
(刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2011, 47: 1434)
[28] Fan L, Liu Z Y, Du C W, et al.Relationship between high pH stress corrosion cracking mechanisms and applied potentials of X80 pipeline steel[J]. Acta Metall. Sin., 2013, 49: 689
(范林, 刘智勇, 杜翠薇等. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49: 689)
[29] Liu Z Y, Li X G, Cheng Y F.Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization[J]. Corros. Sci., 2012, 55: 54
doi: 10.1016/j.corsci.2011.10.002
[30] Musienko A, Cailletaud G.Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking[J]. Acta Mater., 2009, 57: 3840
doi: 10.1016/j.actamat.2009.04.035
[31] Lalvani S B, Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J]. Corros. Sci., 1996, 38: 1709
doi: 10.1016/S0010-938X(96)00065-0
[32] Marshakov A I, Ignatenko V E, Bogdanov R I, et al.Effect of electrolyte composition on crack growth rate in pipeline steel[J]. Corros. Sci., 2014, 83: 209
doi: 10.1016/j.corsci.2014.02.012
[33] Liu Z Y, Li X G, Cheng Y F.Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization[J]. Electrochim. Acta, 2012, 60: 259
doi: 10.1016/j.electacta.2011.11.051
[34] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246
doi: 10.1016/j.corsci.2011.10.031
[35] Liu Z Y, Zhai G L, Du C W, et al.Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil[J]. Acta Metall. Sin., 2008, 44: 209
(刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为[J]. 金属学报, 2008, 44: 209)
[1] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[2] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[3] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[4] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[5] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[6] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[7] 洪川,高运明,杨创煌,童志博. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*[J]. 金属学报, 2015, 51(8): 1001-1009.
[8] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[9] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[10] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[11] 孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为[J]. 金属学报, 2014, 50(11): 1327-1334.
[12] 郝文魁,刘智勇,李晓刚,杜翠薇. 16Mn钢及其热影响区在碱性硫化物环境中的应力腐蚀行为与机理[J]. 金属学报, 2013, 49(7): 881-889.
[13] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[14] 朱敏,刘智勇,杜翠薇,李晓刚,李建宽,李琼,贾静焕. X65和X80管线钢在高pH值溶液中的应力腐蚀开裂行为及机理[J]. 金属学报, 2013, 49(12): 1590-1596.
[15] 王志英 王俭秋 韩恩厚 柯伟 闫茂成 张峻巍 刘楚威. 涂层剥离条件下X70管线钢的应力腐蚀裂纹萌生行为[J]. 金属学报, 2012, 48(10): 1267-1272.