Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 524-530    DOI: 10.11900/0412.1961.2016.00260
  论文 本期目录 | 过刊浏览 |
物理真空去合金法制备微米级多孔不锈钢
李俊1,2,刘文朋1,3,任伊宾1(),沈明钢3,杨柯1
1中国科学院金属研究所 沈阳 110016
2中国科学技术大学材料科学与工程学院 合肥 230026
3辽宁科技大学材料与冶金学院 鞍山 114051
Preparation of Micro Porous Stainless Steel by Physical Vacuum Dealloying
Jun LI1,2,Wenpeng LIU1,3,Yibin REN1(),Minggang SHEN3,Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
全文: PDF(6978 KB)   HTML  
摘要: 

采用真空感应炉制备316L-50Mn初始合金,然后通过真空环境下Mn升华去合金制备多孔不锈钢,应用SEM、EDS和XRD等对物理真空去合金工艺方法制备的多孔不锈钢进行分析,并研究去合金过程中温度以及时间对孔的形成、发展以及孔的形貌的影响。结果表明,物理真空去合金工艺可以制备多孔不锈钢,其孔隙率为30%~60%,孔径为0.5~3 μm,多孔层深度达到15~60 μm。真空热处理温度和时间是物理真空去合金制备方法的2个关键因素,处理温度主要通过影响Mn元素挥发和体扩散速率进而影响孔的形貌,而处理时间对多孔层的深度起到主要作用。

关键词 多孔不锈钢物理真空去合金微米孔Kirkendall效应扩散速率    
Abstract

More and more attentions have been paid to porous stainless steel, as the excellent performance in the physical, chemical and mechanical properties, in the field of solid oxide fuel cell, medical drug for implantable devices and so on. In this work, a new method called physical vacuum dealloying has been applied to produce porous stainless steel. Firstly, 316L-50Mn initial alloy was successfully melted by vacuum induction furnace, then the porous stainless steel was developed by 316L-50Mn after heat treatment in vacuum environment in this experiment. SEM, EDS and XRD were used to analyze the porous stainless steel made by physical vacuum dealloying method. Meanwhile, the effects of temperature and time on the formation, development and morphology of pores during the dealloying process were also studied. The results show that it was effective to produce porous stainless steel by physical vacuum dealloying method. The porosity of micro pores in porous stainless steel is 30%~60%, with 0.5~3 μm pore size, and the 15~60 μm thickness. The temperature mainly affects the hole formation and development by influencing the evaporation and bulk diffusion rate of Mn element, and time plays a major role in the thickness of the porous layer in the process of preparing porous stainless steel.

Key wordsporous stainless steel    physical vacuum dealloying    micro pore    Kirkendall effect    diffusion ratediffusion
收稿日期: 2016-06-27      出版日期: 2017-02-24
基金资助:国家自然科学基金项目No.31370976和国家重点基础研究发展计划项目No.2012CB619101

引用本文:

李俊,刘文朋,任伊宾,沈明钢,杨柯. 物理真空去合金法制备微米级多孔不锈钢[J]. 金属学报, 2017, 53(5): 524-530.
Jun LI,Wenpeng LIU,Yibin REN,Minggang SHEN,Ke YANG. Preparation of Micro Porous Stainless Steel by Physical Vacuum Dealloying. Acta Metall, 2017, 53(5): 524-530.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00260      或      http://www.ams.org.cn/CN/Y2017/V53/I5/524

图1  物理真空去合金系统
图2  316L不锈钢和850 ℃、8 h物理真空去合金前后的316L-50Mn合金的XRD谱
图3  316L-50Mn合金在不同温度下物理真空去合金2 h后显微形貌的SEM像
图4  800 ℃、2 h物理真空去合金后316L-50Mn合金孔壁和表面白色颗粒的SEM像和EDS分析
图5  316L-50Mn合金在850 ℃物理真空去合金不同时间后表面和横截面显微形貌的SEM像
Temperature Time Weight loss rate
h %
800 2 1.6
850 2 4.4
900 2 5.2
850 4 8.9
850 8 12.8
表1  不同物理真空去合金工艺后的316L-50Mn合金的失重率
图6  316L-50Mn合金物理真空去合金工艺中成孔过程
Element Temperature p* Temp. range D
Pa K m2s-1
Cr 800 2.14×10-7 298~m.p. 4.45×10-18
850 1.45×10-6 1.86×10-17
900 8.38×10-6 6.90×10-17
Fe 800 7.63×10-8 900~1812 1.59×10-18
850 5.19×10-7 6.54×10-18
900 2.98×10-6 2.39×10-17
Mn 800 3.37×10-2 993~1373 2.91×10-18
850 1.24×10-1 1.07×10-17
900 4.07×10-1 3.50×10-17
表2  不同温度下316L-50Mn合金中Cr、Fe和Mn元素的饱和蒸汽压和扩散系数[21]
[1] Kato K, Yamamoto K, Ochiai S, et al.Cytocompatibility and mechanical properties of novel porous 316 L stainless steel[J]. Mater. Sci. Eng., 2013, C33: 2736
doi: 10.1016/j.msec.2013.02.038 pmid: 23623090
[2] Yu Z J, Chen Y Q, Yang X D.Effective adsorption of functional biological macromolecules on stainless steel surface with micro/nanoporous texture[J]. Acta Phys.-Chim. Sin., 2013, 29: 1595
doi: 10.3866/PKU.WHXB201305082
[3] Molin S, Gazda M, Kusz B, et al.Evaluation of 316 L porous stainless steel for SOFC support[J]. J. Eur. Ceram. Soc., 2009, 29: 757
doi: 10.1016/j.jeurceramsoc.2008.07.027
[4] Xu G R, Peng M Z, Tang A P, et al.Fabrication and capacitive characteristics of a porous stainless steel-supported MnO2 thin film electrode[J]. Chin. J. Appl. Chem., 2011, 28: 815
[4] (徐国荣, 彭满芝, 唐安平等. 多孔不锈钢基二氧化锰薄膜电极的制备及电容特性[J]. 应用化学, 2011, 28: 815)
doi: 10.3724/SP.J.1095.2011.00500
[5] Luiten-Olieman M W J, Winnubst L, Nijmeijer A, et al. Porous stainless steel hollow fiber membranes via dry-wet spinning[J]. J. Membr. Sci., 2011, 370: 124
[6] Li Z J, Jin Q L, Yang T W, et al.Fabrication of lotus-type porous Cu-Zn alloys with the Gasar continuous casting process[J] Acta. Metall. Sin., 2013, 49: 757
[6] (李再久, 金青林, 杨天武等. Gasar连铸工艺制备藕状多孔Cu-Zn合金[J]. 金属学报, 2013, 49: 757)
[7] Gao H Y, Jia Y H, Shen P Z, et al.Preparation of porous FeAl material[J]. Chin. J. Mater. Res., 2008, 22: 485
[7] (高海燕, 贾跃辉, 沈培智等. FeAl金属间化合物多孔材料的制备[J]. 材料研究学报, 2008, 22: 485)
doi: 10.3321/j.issn:1005-3093.2008.05.007
[8] Bakan H I.A novel water leaching and sintering process for manufacturing highly porous stainless steel[J]. Scr. Mater., 2006, 55: 203
doi: 10.1016/j.scriptamat.2006.03.039
[9] Chi Y D, Tang H P, Wang Q B, et al.Preparation of stainless steel porous filter tube by powder extrusion molding and sintering[J]. Powder Metall. Technol., 2011, 29: 34
[9] (迟煜頔, 汤慧萍, 汪强兵等. 增塑挤压法制备不锈钢多孔过滤管[J]. 粉末冶金技术, 2011, 29: 34)
[10] Shen Y F, Wu P, Gu D D, et al.Micropore structures of lotus-type porous 316 stainless steel prepared by laser sintering[J]. Acta Aeronaut. Astronaut. Sin., 2007, 28: 1236
[10] (沈以赴, 吴鹏, 顾冬冬等. 激光烧结制备藕状316不锈钢多孔材料的微孔结构特征[J]. 航空学报, 2007, 28: 1236)
doi: 10.3321/j.issn:1000-6893.2007.05.033
[11] Wada T, Kato H.Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel[J]. Scr. Mater., 2013, 68: 723
doi: 10.1016/j.scriptamat.2013.01.011
[12] Tsuchiya H, Suzumura T, Terada Y, et al.Formation of self-organized pores on type 316 stainless steel in organic solvents[J]. Electrochim. Acta, 2012, 82: 333
doi: 10.1016/j.electacta.2012.06.048
[13] Wang Y J, Ma X X, Tang G Z, et al.Forming micro-pores for drug loading on medical 316L stainless steel[J]. Bull. Chin. Ceram. Soc., 2009, 28(spec. issue): 29
[13] (王玉江, 马欣新, 唐光泽等. 医用316L不锈钢表面载药微孔制备技术[J]. 硅酸盐通报, 2009, 28(特刊): 29)
[14] Ren Y B, Tong M, Xiao K S, et al.Preparation method for novel porous iron-base alloy [P]. Chin Pat., 201410182792.9, 2014
[14] (任伊宾, 佟敏, 肖克沈等. 一种新型多孔铁基合金的制备方法 [P]. 中国专利, 201410182792.9, 2014)
[15] Sun Y X, Ren Y B, Yang K.New preparation method of micron porous copper through physical vacuum dealloying of Cu-Zn alloys[J]. Mater. Lett., 2016, 165: 1
doi: 10.1016/j.matlet.2015.11.102
[16] Sun Y X, Ren Y B.New preparation method of porous copper powder through vacuum dealloying[J]. Vacuum, 2015, 122: 215
doi: 10.1016/j.vacuum.2015.09.031
[17] Ren H L.Technology of Metallographic Experiment [M]. Beijing: Metallurgical Industry Press, 1992: 1
[17] (任怀亮. 金相实验技术 [M]. 北京: 冶金工业出版社, 1992: 1)
[18] Lu X, Sun Z, Li Z Q, et al.Study of Ni-Mn alloy dealloying[J]. J. Dalian Jiaotong Univ., 2012, 33(6): 81(陆兴, 孙钊, 李志强等. Ni-Mn合金的去合金化 [J]. 大连交通大学学报, 2012, 33(6): 81)
[19] Erlebacher J, Aziz M J, Karma A, et al.Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410: 450
doi: 10.1038/35068529 pmid: 11260708
[20] Ma W J, Ke C B, Zhou M B, et al.Phase-field crystal simulation on evolution and growth kinetics of kirkendall voids in interface and intermetallic compound layer in Sn/Cu soldering system[J]. Acta. Metall. Sin., 2015, 51: 873
[20] (马文婧, 柯常波, 周敏波等. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟[J]. 金属学报, 2015, 51: 873)
doi: 10.11900/0412.1961.2014.00525
[21] Kubaschewski O, Evans E L, Alcock C B.Metallurgical Thermochemistry [M]. 4th Ed., London: Pergamon Press, 1967: 5
[22] Paul A, van Dal1 M J H, Kodentsov A A, et al. The Kirkendall effect in multiphase diffusion[J]. Acta Mater., 2004, 52: 623
doi: 10.1016/j.actamat.2003.10.007
[23] Shi Q Y, Li X H, Zheng Y R, et al.Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes[J]. Acta. Metall. Sin., 2012, 48: 1237
[23] (石倩颖, 李相辉, 郑运荣等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报, 2012, 48: 1237)
doi: 10.3724/sp.j.1037.2012.00172
[24] Guo J J, Fu H Z.Alloy Melt and Its Treatment [M]. Beijing: Chinese Machine Press, 2005: 97
[24] (郭景杰, 傅恒志. 合金熔体及其处理 [M]. 北京: 机械工业出版社, 2005: 97)
[25] Brandes E A, Brook G B.Smithells Metals Reference Book[M]. 7th Ed., Boston: Butterworth-Heinemann, 1998: 1
[26] Yu Y N.Principles of Metallurgy [M]. Beijing: Metallurgical Industry Press, 2000: 210
[26] (余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2000: 210)
[27] Honig R E, Kramer D A.Vapor Pressure Data for the Solid and Liquid Elements[M]. New York: RCA Laboratories, David Sarnoff Research Center, 1969: 285
[1] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.