Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 567-574    DOI: 10.11900/0412.1961.2016.00307
  论文 本期目录 | 过刊浏览 |
焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响
王大伟,修世超()
东北大学机械工程与自动化学院 沈阳 110819
Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint
Dawei WANG,Shichao XIU()
School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
引用本文:

王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
Dawei WANG, Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. Acta Metall Sin, 2017, 53(5): 567-574.

全文: PDF(6361 KB)   HTML
摘要: 

采用真空扩散焊接方法对Q235A低碳钢与AISI304奥氏体不锈钢进行固相扩散连接实验,研究了焊接温度对接头界面组织、力学性能和反应产物的影响。结果表明:Q235A低碳钢/AISI304奥氏体不锈钢复合界面附近形成了合金铁素体层(II区)和增C层(III区),界面两侧异相组织通过扩散结成共用晶界。在焊接温度850 ℃,焊接压力10 MPa,焊接时间60 min条件下,接头强度和韧性达到最大值,高于Q235A低碳钢母材。焊接温度过低(≤800 ℃),接头中析出碳化物Cr23C6,焊接温度过高(≥900 ℃),接头中会产生二次碳化物和金属间化合物,脆性的化合物偏析相使接头强韧性显著下降。严格控制焊接温度在850 ℃区间,并在焊后迅速淬火越过低温区,可有效避免脆性化合物偏析,从而保证扩散焊接头的性能。

关键词 低碳钢奥氏体不锈钢真空扩散焊接界面组织碳化物金属间化合物    
Abstract

The Q235A mild steel and AISI304 austenite stainless steel were subjected to solid diffusion welding by vacuum diffusion bonding approach to investigate the influence of welding temperature on the interfacial morphology, microstructural constituents and mechanical properties. The results show that the single ferrite layer (zone II) and carbon-enriched layer (zone III) were formed nearby the bonding interface of Q235A mild steel and AISI304 austenite stainless steel, and heterogeneous microstructure on both sides of interface formed a common grain boundary by diffusion. The strength and toughness of the bonded joint reached the highest values, for welding temperature of approximately 850 ℃, welding pressure of beyond 10 MPa, and welding time of approximately 60 min, which was larger than those of the Q235A mild steel layer. Otherwise, the Cr23C6 carbide easily formed at a relatively lower temperature (≤800 ℃), whereas the secondary carbides and intermetallic compounds formed at a relatively higher temperature (≥900 ℃). Both cases would dramatically deteriorate the strength-toughness of the bonded joint. Therefore, it was proposed that the brittle precipitate phases can be effectively avoided by controlling the welding temperature to approximately 850 ℃, thus ensuring the resulting performance of the bonded joint.

Key wordsmild steel    austenite stainless steel    vacuum diffusion bonding    interfacial microstructure    carbide    intermetallic compound
收稿日期: 2016-07-18     
基金资助:国家自然科学基金项目No.51375083
Material Cr Ni C Si Mn P S Fe
AISI304 18.19 8.34 0.05 0.47 1.22 0.03 0.02 Bal.
Q235A - - 0.22 0.30 0.43 0.04 0.05 Bal.
表1  AISI304不锈钢和Q235A低碳钢的化学成分
图1  焊接温度850 ℃时Q235A低碳钢/AISI304不锈钢扩散焊界面附近区域的EBSD像
图2  不同温度焊接时Q235A低碳钢/AISI304不锈钢扩散焊接头OM像
图3  焊接温度900 ℃时Q235A低碳钢/AISI304不锈钢扩散焊接头的SEM像和XRD谱
Point C O Si Cr Mn Fe Ni
A 0.05 0.25 0.11 9.24 0.77 88.75 0.82
B 0.08 0.40 0.13 9.46 0.79 88.02 1.02
C 0.09 0.35 0.14 9.30 0.80 88.20 1.12
表2  图3b中点A~C的EDS结果
图4  不同焊接温度时Q235A低碳钢/AISI304不锈钢扩散焊接头元素线分布
图5  不同焊接温度Q235A低碳钢/AISI304不锈钢扩散焊界面显微硬度分布
图6  不同温度焊接的扩散焊接头拉伸试样
图6  不同N含量690合金在1355 ℃等温凝固时Cr、Ti、S、C、N在残余液相中的分布[23]
Sample σb σs δ Ak
MPa MPa % (Jcm-2)
AISI304 785 320 49.5 180.0
Q235A 420 235 29.0 120.0
1# (800 ℃) 425±1 240±1 16.0±0.2 78.8±0.5
2# (850 ℃) 425±1 240±1 28.5±0.3 119.2±0.5
3# (900 ℃) 440±2 245±2 18.9±0.3 79.4±0.5
表3  母材及3种不同试样的室温力学性能
图7  Q235A低碳钢/AISI304不锈钢扩散焊界面冲击断口形貌
[1] Khorrami M S, Mostafaei M A, Pouraliakbar H, et al.Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints[J]. Mater. Sci. Eng., 2014, A608: 35
[2] Mas F, Martin G, Lhuissier P, et al.Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel[J]. Mater. Sci. Eng., 2016, A667: 156
[3] Khalifeh A R, Dehghan A, Hajjari E.Dissimilar joining of AISI 304L/St37 steels by TIG welding process[J]. Acta. Metall. Sin.(Engl. Lett.), 2013, 26: 721
[4] Torkamany M J, Sabbaghzadeh J, Hamedi M J.Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Mater. Des., 2012, 34: 666
[5] Haneklaus N, Reuven R, Cionea C, et al.Tube expansion and diffusion bonding of 316L stainless steel tube-to-tube sheet joints using a commercial roller tube expander[J]. J. Mater. Process. Technol., 2016, 234: 27
[6] Kurt B, ?alik A.Interface structure of diffusion bonded duplex stainless steel and medium carbon steel couple[J]. Mater. Charact., 2009, 60: 1035
[7] Atabaki M M, Bajgholi M E, Dehkordi E H.Partial transient liquid phase diffusion bonding of zirconium alloy (Zr-2.5Nb) to stainless steel 321[J]. Mater. Des., 2012, 42: 172
[8] Deng Y Q, Sheng G M, Yin L J.Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer[J]. Rare Met. Mater. Eng., 2015, 44: 1041
[9] Kundu S, Chatterjee S.Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Mater. Sci. Eng., 2006, A425: 107
[10] Balasubramanian M.Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding[J]. Mater. Des., 2015, 77: 161
[11] Yuan X J, Kang C Y.Microstructural characteristics in vacuum TLP (transient liquid phase) bonds using a novel iron-based interlayer based on duplex stainless steel base metal alloyed with a melting-point depressant[J]. Vacuum, 2014, 99: 12
[12] Wu M F, Kuang H J, Wang F J, et al.Partially transient liquid phase-diffusion bonding on Ti(C, N)-Al2O3 ceramic matrix composites using Zr/Cu/Zr as interlayer[J]. Acta Metall. Sin., 2014, 50: 619
[12] (吴铭方, 匡鸿锦, 王凤江等. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料[J]. 金属学报, 2014, 50: 619)
[13] Zhang X, Shi X H, Wang J, et al.Effect of bonding temperature on the microstructures and strengths of C/C composite/GH3044 alloy joints by partial transient liquid-phase (PTLP) bonding with multiple interlayers[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 663
[14] Peng F, Dong X H, Liu K, et al.Effects of strain rate and plastic work on martensitic transformation kinetics of austenitic stainless steel 304[J]. J. Iron Steel Res. Int., 2015, 22: 931
[15] Li X F, Ding W, Cao J, et al.In situ TEM observation on martensitic transformation during tensile deformation of SUS304 metastable austenitic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 302
[16] Liu H P, Liu B, Li D Z, et al.Microstructural characterization of welded joint in duplex stainless steel by laser continuous heat treatment[J]. J. Iron Steel Res. Int., 2014, 21: 710
[17] Abraham S T, Albert S K, Das C R, et al.Assessment of sensitization in AISI 304 stainless steel by nonlinear ultrasonic method[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 545
[18] Qi Z F.Diffusion and Phase Transition in Solid Metals [M]. Beijing: China Machine Press, 1998: 107
[18] (戚正风. 固态金属中的扩散与相变 [M]. 北京: 机械工业出版社, 1998: 107)
[19] Zhao Z Y.Alloy Steel Design [M]. Beijing: National Defense Industry Press, 1999: 250
[19] (赵振业. 合金钢设计 [M]. 北京: 国防工业出版社, 1999: 250)
[20] Cui Z Q.Metal and Heat Treatment [M]. Beijing: China Machine Press, 1993: 234
[20] (崔忠圻. 金属学与热处理 [M]. 北京: 机械工业出版社, 1993: 234)
[21] Dobrzański L A, Brytan Z, Grande M A, et al.Innovative PM duplex stainless steels obtained basing on the schaeffler diagram[J]. Arch. Mater. Sci. Eng., 2008, 30: 49
[22] Pacquentin W, Caron N, Oltra R.Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting[J]. Appl. Surf. Sci., 2015, 356: 561
[23] Gómez X, Echeberria J.Microstructure and mechanical properties of carbon steel A210-superalloy Sanicro 28 bimetallic tubes[J]. Mater. Sci. Eng., 2003, A348: 180
[24] Ghosh C, Paul A.Elucidation of bifurcation of the kirkendall marker plane in a single phase using physico-chemical approach[J]. Intermetallics, 2008, 16: 955
[25] Svoboda J, Fischer F D, Abart R.Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases[J]. Acta Mater., 2010, 58: 2905
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[7] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[8] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[9] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[13] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[14] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[15] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.