Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 539-548    DOI: 10.11900/0412.1961.2016.00494
  论文 本期目录 | 过刊浏览 |
Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征
徐洋,鲍思前(),赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing
Yang XU,Siqian BAO(),Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(6859 KB)   HTML  
摘要: 

利用定量逐层研磨和计算机辅助重建及可视化技术,并结合电子背散射衍射(EBSD)方法,研究了Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌。结果表明,Goss取向晶粒主要呈“塔状”,黄铜取向晶粒则类似“上大下小”倒锥状,{411}<148>取向晶粒也表现为“塔状”和倒锥状。而{111}<112>取向晶粒形貌各异,没有一致性。与其它取向晶粒相比,Goss取向晶粒在三维尺度上没有尺寸优势,Goss取向晶粒异常长大前,其长大主要受曲率控制。

关键词 Hi-B钢Goss取向晶粒二次再结晶三维形貌EBSD    
Abstract

Microstructure and texture evolution of Hi-B steel have been extensively studied in the past decades, and the microstructures are ordinarily characterized only using a single two-dimensional plane of polished or thin foil specimen. Much information on the morphologies is lost owing to the fact that a large part of microstructure is embedded beneath the polished surface, or removed during specimen preparation. Recently, computer-aided three-dimensional morphologies have been developed which can visualize microstructure in metals. The three-dimensional visualization promotes a better understanding of the actual information of polycrystalline materials, especially when the grain morphologies and size were required in three dimensions. In this work, three-dimensional morphologies of different oriented grains which include Goss, brass, {411}<148> and {111}<112> oriented grains in Hi-B steel formed during early stage of secondary recrystallization annealing were investigated by a combination of serial sectioning, computer-aided reconstruction and visualization, and electron back-scattered diffraction technique, and then the growth behavior of Goss oriented grains before abnormal growth was discussed. The results show that Goss oriented grains mainly exhibit pagoda shape, brass oriented grains are similar to inverted taper shape, which the grain sizes reduce gradually from the surface of the sample to the internal along normal direction, and {411}<148> oriented grains also exhibit pagoda shape and inverted taper shape. However, the morphologies of {111}<112> oriented grains show irregular shape. Compared with other oriented grains, Goss oriented grains have no size advantages on three-dimensional scale, and the growth of Goss oriented grains is mainly controlled by curvature before they grow up abnormally.

Key wordsHi-B steel    Goss oriented grain    secondary recrystallization    three-dimensional morphology    EBSD
收稿日期: 2016-11-07      出版日期: 2017-01-23
基金资助:国家自然科学基金项目No.51274155

引用本文:

徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing. Acta Metall, 2017, 53(5): 539-548.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00494      或      http://www.ams.org.cn/CN/Y2017/V53/I5/539

图1  图像定位和目标组织标记示意图
图2  等效长方体几何尺寸示意图
图3  二次再结晶退火初期样品表面EBSD取向图
图4  图3中G1~G8晶粒三维形貌图
图5  G3晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
G1 102.60 102.89 93.96 1∶1∶0.92
G2 195.46 170.28 131.10 1∶0.87∶0.67
G3 142.38 160.40 137.70 1∶1.13∶0.97
G4 87.50 60.56 84.01 1∶0.69∶0.96
G5 114.95 130.50 111.30 1∶1.14∶0.97
G6 90.87 85.52 91.13 1∶0.94∶1
G7 103.66 119.92 91.35 1∶1.16∶0.88
G8 74.80 72.60 70.02 1∶0.97∶0.94
表1  图3中G1~G8晶粒等效长方体几何尺寸
图6  图3中B1~B5晶粒三维形貌图
图7  B4晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
B1 102.77 86.60 51.23 1∶0.84∶0.5
B2 76.83 68.13 77.30 1∶0.89∶1
B3 154.94 113.41 65.36 1∶0.73∶0.42
B4 215.78 110.36 64.00 1∶0.51∶0.3
B5 71.03 66.62 77.30 1∶0.94∶1.08
表2  B1~B5晶粒等效长方体几何尺寸
图8  图3中L1~L5晶粒三维形貌图
图9  L4晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
L1 121.66 128.66 110.77 1∶1.06∶0.91
L2 102.19 129.06 108.79 1∶1.26∶1.06
L3 166.95 209.40 163.40 1∶1.25∶0.98
L4 108.99 114.76 137.55 1∶1.05∶1.26
L5 79.73 66.32 78.10 1∶0.83∶0.98
表3  L1~L5晶粒等效长方体几何尺寸
图10  图3中T1~T8晶粒三维形貌图
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
T1 105.82 97.30 44.60 1∶0.92∶0.42
T2 174.79 128.21 105.93 1∶0.73∶0.61
T3 130.89 108.47 70.65 1∶0.83∶0.54
T4 117.18 103.08 79.97 1∶0.88∶0.68
T5 92.49 90.13 93.10 1∶0.97∶1
T6 109.33 105.44 105.72 1∶0.96∶0.96
T7 101.18 110.19 80.50 1∶1.09∶0.8
T8 118.90 122.84 156.50 1∶1.03∶1.32
表4  图3中T1~T8晶粒等效长方体几何尺寸
[1] Goss N P.Electrical sheet and method and apparatus for its manufacture and test [P]. US Pat., 1965559, 1934
[2] Littmann M F, Heek J E.Process of increasing the permeability of oriented silicon steels [P]. US Pat., 2599340, 1952
[3] Littmann M F.Structures and magnetic properties of grain-oriented 3.2% silicon-iron[J]. J. Appl. Phys., 1967, 38: 1104
[4] Hillert M.On the theory of normal and abnormal grain growth[J]. Acta Metall., 1965, 13: 227
doi: 10.1016/0001-6160(65)90200-2
[5] Harase J, Shimizu R.Distribution of {100}<001> oriented grains in the primary recrystallized 3%Si-Fe alloy[J]. Trans. Jpn. Inst. Met., 1988, 29: 388
[6] Shimizu R, Harase J.Coincidence grain boundary and texture evolution in Fe-3%Si[J]. Acta Metall., 1989, 37: 1241
[7] Hayakawa Y, Szpunar J A, Palumbo G, et al.The role of grain boundary character distribution in Goss texture development in electrical steels[J]. J. Magn. Magn. Mater., 1996, 160: 143
doi: 10.1016/0304-8853(96)00141-2
[8] Rajmohan N, Szpunar J A.An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization[J]. Scr. Mater., 2001, 44: 2387
doi: 10.1016/S1359-6462(01)00941-1
[9] Hayakawa Y, Kurosawa M.Orientation relationship between primary and secondary recrystallized texture in electrical steel[J]. Acta Mater., 2002, 50: 4527
doi: 10.1016/S1359-6454(02)00271-9
[10] Park H, Kim D Y, Hwang N M, et al.Microstructural evidence of abnormal grain growth by solid-state wetting in Fe-3%Si steel[J]. J. Appl. Phys., 2004, 95: 5515
[11] Wu K M, Enomoto M.Three-dimensional analysis of degenerate ferrite in an Fe-C-Mo alloy[J]. Chin. J. Stereol. Image Anal., 2004, 9: 134
[11] (吴开明, Enomoto M.Fe-C-Mo合金中退化铁素体的三维分析[J]. 中国体视学与图像分析, 2004, 9: 134)
doi: 10.3969/j.issn.1007-1482.2004.03.002
[12] Wu K M.3-D morphology observation of degenerate ferrite in steel Fe-0.28C-3.0Mo using serial sectioning and computer-aided reconstruction[J]. Acta Metall. Sin., 2005, 41: 1237
[12] (吴开明. 连续截面和计算机辅助重建法观察Fe-0.28C-3.0Mo合金钢退化铁素体的三维形貌[J]. 金属学报, 2005, 41: 1237)
doi: 10.3321/j.issn:0412-1961.2005.12.001
[13] Luan J H, Liu G Q, Wang H.Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall. Sin., 2011, 47: 69
[13] (栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47: 69)
doi: 10.3724/sp.j.1037.2010.00233
[14] Zhang Q.Curvature-driven grain growth by cellular automaton simulation in isothermal process [D]. Shenyang: Northeastern University, 2012
[14] (张倩. 等温过程曲率驱动晶粒长大的元胞自动机模拟 [D]. 沈阳: 东北大学, 2012)
[15] He Z Z, Zhao Y, Luo H W.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 102
[15] (何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 102)
[16] Gottstein G, Molodov D A, Shvindlerman L S.Grain boundary migration in metals: Recent developments[J]. Interf. Sci., 1998, 6: 7
doi: 10.1023/A:1008641617937
[17] Burke J E, Turnbull D.Recrystallization and grain growth[J]. Prog. Metal Phys., 1952, 3: 220
[18] Lin P, Palumbo G, Harase J, et al.Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy[J]. Acta Mater., 1996, 44: 4677
[19] Takamiya T, Kurosawa M, Komatsubara M. Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 334
[20] Yan M Q, Qian H, Yang P, et al.Analysis of micro-texture during secondary recrystallization in a Hi-B electrical steel[J]. J. Mater. Sci. Technol., 2011, 27: 1065
doi: 10.1016/S1005-0302(11)60187-4
[21] Wang H, Luo L J, Wang J A.Formation and growth of cubic grains during rolling-annealing process in Fe-3.2%Si alloy[J]. Trans. Mater. Heat Treat., 2012, 33(5): 70
[21] (王辉, 骆靓鉴, 王均安. 铁硅合金轧制-退火过程中立方取向晶粒的形核与长大[J]. 材料热处理学报, 2012, 33(5): 70)
[22] Zhou B X.Issues concerning the formation of cube texture of silicon-iron alloy[J]. Baosteel Technol., 2000, (5): 52
[22] (周邦新. 铁硅合金中形成立方织构的有关问题[J]. 宝钢技术, 2000, (5): 52)
[23] Park H K, Park C S, Na T W, et al.Irregular or smooth grain boundaries evolved after secondary recyrstallization of Fe-3%Si steel[J]. Mater. Trans., 2012, 53: 658
[24] Park J Y, Szpunar J A. Influence of the primary recrystallization texture on abnormal grain growth of Goss grains in grain oriented electrical steels [J]. Mater. Sci. Forum, 2002, 408-412: 821
[25] Nakashima S, Takashima K, Harase J.Effect of silicon content on secondary recrystallization in grain-oriented electrical steel produced by single-stage cold rolling process[J]. ISIJ Int., 1991, 31: 1007
[26] Jiang S H, Mao W M, Yang P, et al.Recrystallization behavior of warm rolled Fe-6.5%Si alloy sheet[J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1643
[26] (蒋虽合, 毛卫民, 杨平等. Fe-6.5%Si合金温轧后退火过程中再结晶行为[J]. 北京科技大学学报, 2014, 36: 1643)
[27] Liu Z Q, Yang P, Mao W M, et al.Effect of {114}<418> texture on abnormal growth during secondary recrystallization in grain-oriented steel[J]. Acta Metall. Sin., 2015, 51: 769
[27] (刘志桥, 杨平, 毛卫民等. 取向硅钢中{114}<418>织构对二次再结晶时晶粒异常长大的影响[J]. 金属学报, 2015, 51: 769)
[1] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[2] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[3] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[4] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
[5] 戴启雷, 梁志芳, 吴建军, 孟立春, 史清宇. Al-Mg-Si合金搅拌摩擦焊接头DSC测试过程中组织变化及能量释放分析*[J]. 金属学报, 2014, 50(5): 587-593.
[6] 黄洪涛,Godfrey Andrew,刘伟,付宝勤,刘庆. 多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J]. 金属学报, 2013, 49(8): 932-938.
[7] 张航,许庆彦,孙长波,戚翔,唐宁,柳百成. 单晶高温合金螺旋选晶过程的数值模拟与实验研究:II螺旋段[J]. 金属学报, 2013, 49(12): 1521-1531.
[8] 张素芳,杨潇,张勇. Al3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 2013, 49(11): 1473-1480.
[9] 颜孟奇 钱浩 杨平 宋惠军 邵媛媛 毛卫民. 电工钢中黄铜织构行为及其对Goss织构的影响[J]. 金属学报, 2012, 48(1): 16-22.
[10] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[11] 杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 657-665.
[12] 杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 II. 马氏体内取向差、取向变化及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 666-673.
[13] 方晓英 王卫国 Rohrer G S 周邦新. 冷轧退火后铁素体不锈钢的晶界面分布[J]. 金属学报, 2010, 46(4): 404-410.
[14] 张晓丹 A Godfrey 刘伟 刘庆. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010, 46(2): 141-146.
[15] 胡静 林栋樑 王 燕. EBSD技术分析大晶粒NiAl合金高温塑性变形 组织演变与CSL特征晶界分布[J]. 金属学报, 2009, 45(6): 652-656.