Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 233-238    DOI: 10.11900/0412.1961.2016.00275
  本期目录 | 过刊浏览 |
具有反常非晶形成能力的U-Cr二元合金
黄火根1(),徐宏扬1,张鹏国1,王英敏2,柯海波1,张培1,刘天伟1
1 中国工程物理研究院材料研究所 江油 621907
2 大连理工大学材料科学与工程学院三束材料改性教育部重点实验室 大连 116024
U-Cr Binary Alloys with Anomalous Glass-Forming Ability
Huogen HUANG1(),Hongyang XU1,Pengguo ZHANG1,Yingmin WANG2,Haibo KE1,Pei ZHANG1,Tianwei LIU1
1 Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
2 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(906 KB)   HTML  
摘要: 

基于共晶法则在U-Cr体系中深共晶点U81Cr19靠Cr一侧设计系列二元合金。在甩带条件下,合金形成单一的非晶相, 其初始晶化温度Tx接近700 K,约化晶化温度Trx接近0.6。U-Cr体系的强非晶形成能力不符合在热力学、动力学和结构密堆角度上的预测,显示出一定的反常性,为进一步认识锕系非晶提供了潜在的基础模型体系。

关键词 非晶合金铀合金非晶形成能力快速凝固    
Abstract

As for actinide metallic glasses, a minor branch of metallic glasses, almost all of them are binary alloys and their glass-forming rule has been insufficiently studied. Considering that binary alloy systems are the base of ternary or more component glass systems that possess better glass-forming ability, binary glass systems U-Fe, U-Co and U-Cr are chosen for study. After earlier investigation on the first two systems, the glass formation in U-Cr system is explored in this work. According to the eutectic criterion, a series of U-Cr alloys were designed at the Cr-side of the eutectic point U81Cr19. Under the preparation of melt-spinning, these alloys can be formed into a single amorphous phase with the capacity of crystallizing at about 700 K. The reduced crystallization temperature (Trx) of some U-Cr alloys exceeded 0.6, higher than those of U-Fe and U-Co metallic glasses, and comparable to those of ordinary bulk amorphous alloys. Being inconsistent with the prediction based on thermodynamics, kinetics and efficient structural packing, U-Cr alloy system shows anomalous strong glass-forming ability among reported actinide binary glasses. This abnormal behavior might be related to the existence of comparatively more mediate metastable phases in U-Cr system, which can be speculated from the multi-peak crystallization phenomenon. This system could be a potential system model for studying the glass formation of actinide amorphous alloys further.

Key wordsamorphous alloy    uranium alloy    glass-forming ability    rapid solidification
收稿日期: 2016-07-01      出版日期: 2016-12-14
基金资助:国家自然科学基金No.51501169,国防基础预研项目No.B1520133007及中国工程物理研究院科技发展基金项目Nos.2013A0301015和2014B0302047

引用本文:

黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability. Acta Metall, 2017, 53(2): 233-238.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00275      或      http://www.ams.org.cn/CN/Y2017/V53/I2/233

图1  U-Cr合金相图[16]
Alloy Composition Phase constitution
No. Ingot sample Ribbon sample
1 U67Cr33 α-(U, Cr) + bcc-Cr Amorphous+minor crystalline
2 U69.2Cr30.8 α-(U, Cr) + bcc-Cr Amorphous
3 U73Cr27 α-(U, Cr)+ bcc-Cr Amorphous
4 U75Cr25 α-(U, Cr) + bcc-Cr Amorphous
5 U81Cr19 α-(U, Cr) + bcc-Cr Nanocrystalline
表1  U-Cr合金的编号、成分与相组成
图2  U-Cr合金母锭的XRD谱
图3  U-Cr合金快淬条带的XRD谱
图4  U-Cr合金条带样品的DSC曲线
Alloy Tx / K Tp1 / K Tp2 / K Tm / K TL / K Tm-Tx / K Tx / TL
U67Cr33 686 935 1034 1140 1154 454 0.594
U69.2Cr30.8 699 939 1034 1140 1154 441 0.606
U73Cr27 690 939 1033 1141 1152 451 0.599
U75Cr25 680 938 1033 1141 1154 461 0.589
U81Cr19 649 935 1034 1141 1156 492 0.561
表2  U-Cr非晶合金的热力学参数
[1] Sun Y, Zhang F, Ye Z, et al.‘Crystal Genes’ in metallic liquids and glasses[J]. Sci. Rep., 2016, 6: 23734
[2] Risti? R, Zadro K, Paji? D, et al.On the origin of bulk glass forming ability in Cu-Hf, Zr alloys[J]. EPL, 2016, 114: 17006
[3] Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869
[4] Miracle D B,Louzguine-Luzgin D V, Louzguina-Luzgina L V, et al. An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability[J]. Int. Mater. Rev., 2010, 55: 218
[5] Laws K J, Miracle D B, Ferry M.A predictive structural model for bulk metallic glasses[J]. Nat. Commun., 2015, 6: 8123
[6] Chen H S.Glassy metals[J]. Rep. Prog. Phys., 1980, 43: 353
[7] Li J H, Dai Y, Cui Y Y, et al.Atomistic theory for predicting the binary metallic glass formation[J]. Mater. Sci. Eng., 2011, R72: 1
[8] Dong D D, Zhang S, Wang Z J, et al.Composition interpretation of binary bulk metallic glasses via principal cluster definition[J]. Mater. Des., 2016, 96: 115
[9] Bleiberg M L, Jones L J.The effect of pile-irradiation on U3Si[J]. Trans. AIME, 1958, 212: 758
[10] Huang H G, Ke H B, Wang Y M, et al.Stable U-based metallic glasses[J]. J. Alloys Compd., 2016, 684: 75
[11] Ray R, Musso E.Amorphous alloys in the U-Cr-V system [P]. US Pat., 3981722, 1976
[12] Giessen B C, Elliott R O.Properties of metallic glasses containing actinide metals: I. Thermal properties of U-M glasses (M=V, Cr, Mn, Fe, Co, and Ni) [A]. Proceedings of the 3rd International Conference on Rapid Quenching[D][C]. Brighton, UK: The Metals Society, 1978: 406
[13] Elliott R O, Giessen B C.On the formation of metallic glasses based on U, Np or Pu[J]. Acta Metall., 1982, 30: 785
[14] Huang H G, Ke H B, Zhang P, et al.Effect of minor alloying on the glass formation of U-based alloys[J]. J. Alloys Compd., 2016, 688: 599
[15] Huang H G, Wang Y M, Chen L, et al.Study on formation and corrosion resistance of amorphous alloy in U-Co system[J]. Acta Metall. Sin., 2015, 51: 623
[15] (黄火根, 王英敏, 陈亮等. U-Co系非晶合金的形成与耐蚀性研究[J]. 金属学报, 2015, 51: 623)
[16] Venkatraman M, Neumann J P, Peterson D E. The Cr-U (Chromium-Uranium) system[J]. Bull. Alloy Phase Diag., 1985, 6: 425
[17] Li G X, Wu S.Nuclear Fuels [M]. Beijing: Chemical Industry Press, 2007: 49
[17] (李冠兴, 武胜. 核燃料[M]. 北京: 化学工业出版社, 2007: 49)
[18] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33: 177
[18] (汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177)
[19] Ke H B, Xu H Y, Huang H G, et al.Non-isothermal crystallization behavior of U-based amorphous alloy[J]. J. Alloys Compd., 2017, 691: 436
[20] Rest J.A generalized hard-sphere model for the irradiation induced viscosity of amorphous binary alloys[J]. Comput. Mater. Sci., 2008, 44: 207
[21] Adam G, Gibbs J H.On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. J. Chem. Phys., 1965, 43: 139
[22] Hou Z S, Lu G X.Principle of Metals [M]. Shanghai: Shanghai Science and Technology Press, 1990: 28
[22] (侯增寿, 卢光熙. 金属学原理 [M]. 上海: 上海科学技术出版社, 1990: 28)
[23] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46: 2817
[24] Egami T, Waseda Y.Atomic size effect on the formability of metallic glasses[J]. J. Non-Cryst. Solids, 1984, 64: 113
[25] Douglas J F, Betancourt B A P, Tong X H, et al. Localization model description of diffusion and structural relaxation in glass-forming Cu-Zr alloys[J]. J. Stat. Mech., 2016, 2016: 054048
[1] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[2] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[3] 赵雷,江鸿翔,AHMAD Tauseef,赵九洲. Cu-Co-Fe合金雾化合金液滴凝固过程研究*[J]. 金属学报, 2015, 51(7): 883-888.
[4] 马广财, 付华萌, 王峥, 许庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[5] 杨高林,林鑫,胡桥,宋梦华,汪志太,黄卫东. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响[J]. 金属学报, 2013, 49(8): 925-931.
[6] 陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
[7] 杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
[8] 陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
[9] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[10] 马国峰,贺春林, 李正坤,张波,李宏,张海峰,胡壮麒. Ti或Al添加对Zr50Cu50非晶合金W润湿行为和界面特性的影响[J]. 金属学报, 2013, 29(4): 495-500.
[11] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[12] 李慧,梁永锋,贺睿琦,林均品,叶丰. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452-1456.
[13] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[14] 唐明强 朱正旺 付华萌 王爱民 李宏 张宏伟 马国锋 张海峰 胡壮麒. 内生枝晶相体积分数可控的钛基非晶复合材料[J]. 金属学报, 2012, 48(7): 861-866.
[15] 晁月盛,王莉,张艳辉,朱涵娴,罗丽平. 脉冲磁场处理Fe52Co34Hf7B6Cu1非晶的低温真空退火效应[J]. 金属学报, 2012, 48(6): 749-752.