Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 31-37    DOI: 10.11900/0412.1961.2016.00082
  本期目录 | 过刊浏览 |
MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究
邹建雄1,刘波1(),林黎蔚1,任丁1,焦国华2,鲁远甫2,徐可为3
1 四川大学原子核科学技术研究所教育部辐射物理及技术重点实验室 成都 610064
2 中国科学院深圳先进技术研究院 深圳 5180553 西安交通大学金属材料强度国家重点实验室 西安 710049
Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier
Jianxiong ZOU1,Bo LIU1(),Liwei LIN1,Ding REN1,Guohua JIAO2,Yuanfu LU2,Kewei XU3
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
3 State key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
Jianxiong ZOU, Bo LIU, Liwei LIN, Ding REN, Guohua JIAO, Yuanfu LU, Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. Acta Metall Sin, 2017, 53(1): 31-37.

全文: PDF(1680 KB)   HTML
摘要: 

采用磁控共溅射Ru和MoC靶制备非晶RuMoC薄膜。用四探针仪(FPPT)、X射线光电子能谱仪(XPS)、高分辨率透射电镜(HRTEM)和小角掠射X射线衍射仪(GIXRD)表征不同掺杂组分RuMoC薄膜和不同温度退火态Cu/RuMoC/p-SiOC∶H/Si多层膜系的方块电阻、成分和微观结构。结果表明,通过调控Ru膜中掺入Mo和C元素的含量能够实现RuMoC合金薄膜微结构设计及抑制膜体残余氧含量,且当MoC和Ru靶的溅射功率比为0.5时获得的RuMoC II薄膜综合性能最佳;500 ℃退火态RuMoC II薄膜中C-Mo和C-Ru化学键均未出现大量断裂,两者协同作用抑制了RuMoC薄膜再结晶和膜体氧含量升高,是Cu/RuMoC II/p-SiOC∶H/Si多层膜系具有高温热稳定性和优异电学性能的主要机制。

关键词 非晶RuMoC无籽晶阻挡层热稳定性非铜互连    
Abstract

Cu has been adopted to replace Al for conduction lines and contact structures in very large-scale integrated circuits due to its low resistivity. However, Cu could rapidly react with the SiO2-based dielectric under 300 ℃ and form deep level impurities which are strong sink for carriers, leading to the dielectric degradation of the devices. Therefore, it is important to insert a stable barrier between the Cu wiring and SiO2-based dielectric for suppressing Cu diffusion and improving the adhesive strength. The prediction of international technology roadmap for semiconductors that the thickness of diffusion barrier would be further reduced to 3 nm for 22 nm technology node indicates the widely being used Ta/TaN barrier would be incompetent in the future, since Ta/TaN barrier at the limited thickness exhibits a high resistivity and a columnar grain structure which provides lots of vertical grain boundaries for Cu diffusion. Therefore a directly platable amorphous single barrier with low resistivity is highly desired. In this work, MoC are chosen as impurity to expect for amorphous Ru-based films. The RuMoC films with different components were deposited by RF magnetron co-sputtering with different deposition power ratios of MoC versus Ru targets. The sheet resistances, microstructures and components of the RuMoC films in RuMoC/Si and Cu/RuMoC/p-SiOC∶H/Si structures were studied. The sheet resistances, residual oxygen contents and microstructures of the RuMoC films have close correlation with the doping contents of Mo and C elements which can be easily controlled by tuning the deposition power on MoC target. When the deposition power ratio of MoC versus Ru targets was 0.5, amorphous RuMoC II film with low sheet resistance and residual oxygen content was obtained. After annealing at 500 ℃ the Mo-C and Ru-C bonds were well-preserved and co-suppressed the recrystallization of the film and the increasing of the oxygen content, contributing to excellent thermal stability and electrical properties of Cu/RuMoC II/p-SiOC∶H/Si film.

Key wordsamorphous RuMoC film    seedless diffusion barrier    thermal stability    Cu metallization
收稿日期: 2016-03-09     
基金资助:资助项目 国家自然科学基金项目Nos.11075112和11605116,深圳市科技计划项目Nos.JCYJ20150925163313898和JCYJ-20140417113130693以及深圳市工程实验室项目No.2012-1127
图1  不同测射功率比(PMoC/PRu)制备的RuMoC薄膜组分和方块电阻变化
图2  沉积态Ru (100 nm)/Si、RuMoC I (100 nm)/Si和RuMoC II (100 nm)/Si薄膜的GIXRD谱,以及沉积态RuMoC II (100 nm)/Si薄膜的HRTEM像及Fourier变换
图3  试样A和B的方块电阻随退火温度变化曲线
图4  试样A和B沉积态和不同温度退火态的GIXRD谱
图5  沉积态和500 ℃退火态RuMoC II样品的C1s、Ru3d和O1s XPS谱
Bond Fitting peak Binding energy / eV A0 / % At / % Ref.
C1s C-Ru 280.8 22.1% 21.1 [26]
C-Mo 281.8 68.7% 70.9 [27]
C-C 284.8 9.2% 8.0 [28]
O1s MoOx 530.5 18.0% 17.0 [29]
RuOx 531.8 82.0% 83.0 [30]
Ru3d Ru-C 279.2 (Ru3d5/2) 5.9 (Ru3d5/2) 5.6 (Ru3d5/2) [26]
283.6 (Ru3d3/2)
Ru 280.2 (Ru3d5/2) 92.3 (Ru3d5/2) 90.7 (Ru3d5/2) [26,28,30]
285.0 (Ru3d3/2)
RuOx 281.8 (Ru3d5/2) 1.8 (Ru3d5/2) 3.7 (Ru3d5/2) [29~31]
286.2 (Ru3d3/2)
表1  RuMoC II薄膜特征吸收峰峰位及面积占比
图6  试样A 500 ℃退火前后和试样B 400 ℃退火后的J-E曲线
[1] Liu B, Song Z X, Li Y H, et al.An ultrathin Zr(Ge) alloy film as an exhaustion interlayer combined with Cu(Zr) seed layer for the Cu/porous SiOC∶H dielectric integration[J]. Appl. Phys. Lett., 2008, 93: 174108
[2] Rosenberg R, Edelstein D C, Hu C K, et al.Copper metallization for high performance silicon technology[J]. Annu. Rev. Mater. Sci., 2000, 30: 229
[3] Semiconductor Industry Association.2005 International Technology Roadmap for Semiconductors [Z]. TX, USA: International SEMATECH, 2005: 1
[4] Chang C A.Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures[J]. J. Appl. Phys., 1990, 67: 566
[5] Leu L C, Norton D P, McElwee-White L, et al. Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects[J]. J. Appl. Phys. Lett., 2008, 92: 111917
[6] Wang J H, Chen L J, Lu Z C, et al.Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization[J]. J. Vac. Sci. Technol., 2002, 20B: 1522
[7] Yang L Y, Zhang D H, Li C Y, et al. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration [J]. Thin Solid Films, 2004, 462-463: 176
[8] Hsu K C, Perng D C, Wang Y C.Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier[J]. J. Alloys. Compd., 2012, 516: 102
[9] Arunagiri T N, Zhang Y, Chyan O, et al.5 nm ruthenium thin film as a directly plateable copper diffusion barrier[J]. Appl. Phys. Lett., 2005, 86: 083104
[10] Liu B, Zhang Y P, Xu K W.Improvement of thermal stability and electrical property of Cu/Cu(Zr)/SiOC∶H film stack by controlling the structure and composition of Zr(Ge) nano-interlayer[J]. Microelectron. Eng., 2014, 118: 41
[11] Bouhtiyya S, Lucio Porto R, La?k B, et al.Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices[J]. Scr. Mater., 2013, 68: 659
[12] Damayanti M, Sritharan T, Mhaisalkar S G, et al.Effects of dissolved nitrogen in improving barrier properties of ruthenium[J]. Appl. Phys. Lett., 2006, 88: 044101
[13] Jiao G H, Liu B, Li Q R.Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/p-SiOC∶H ultralow-k dielectric integration[J]. Appl. Phys., 2015, 120A: 579
[14] Henderson L B, Ekerdt J G.Time-to-failure analysis of 5 nm amorphous Ru(P) as a copper diffusion barrier[J]. Thin Solid Films, 2009, 517: 1645
[15] Hsu K C, Perng D C, Yeh J B, et al.Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects[J]. Appl. Surf. Sci., 2012, 258: 7225
[16] Wojcik H, Krien C, Merkel U, et al.Characterization of Ru-Mn composites for ULSI interconnects[J]. Microelectron. Eng., 2013, 112: 103
[17] Cattaruzza E, Battaglin G, Riello P, et al.On the synthesis of a compound with positive enthalpy of formation: Zinc-blende-like RuN thin films obtained by rf-magnetron sputtering[J]. Appl. Surf. Sci., 2014, 320: 863
[18] Jansson U, Lewin E.Sputter deposition of transition-metal carbide films-a critical review from a chemical perspective[J]. Thin Solid Films, 2013, 536: 1
[19] Trgala M, ?emli?ka M, Neilinger P, et al.Superconducting MoC thin films with enhanced sheet resistance[J]. Appl. Surf. Sci., 2014, 312: 216
[20] Huang Q F, Yoon S F, Rusli, et al. Molybdenum-containing carbon films deposited using the screen grid technique in an electron cyclotron resonance chemical vapor deposition system[J]. Diam. Relat. Mater., 2000, 9: 534
[21] Kacim S, Binst L, Reniers F, et al.Composition and structure of reactively sputter-deposited molybdenum-carbon films[J]. Thin Solid Films, 1996, 287: 25
[22] Liu B, Yang J J, Liu C H, et al.Ultrathin CuSiN/p-SiC∶H bilayer capping barrier for Cu/ultralow-k dielectric integration[J]. Appl. Phys. Lett., 2009, 94: 153116
[23] Laurila T, Zeng K, Kivilahti J K, et al.Chemical stability of Ta diffusion barrier between Cu and Si[J]. Thin Solid Films, 2000, 373: 64
[24] Holloway K, Fryer P M, Cabral C Jr, et al.Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions[J]. J. Appl. Phys., 1992, 71: 5433
[25] Seibt M, Hedemann H, Riedel A A, et al.Structural and electrical properties of metal silicide precipitates in silicon[J]. Phys. Status Solidi, 1999, 171A: 301
[26] Lee J S, Yie J E.An XANES study of carbides of molybdenum and tungsten[J]. Korean J. Chem. Eng., 1991, 8: 164
[27] Bachman B J, Vasile M J.Ion bombardment of polyimide films[J]. J. Vac. Sci. Technol., 1989, 7A: 2709
[28] Anwar M, Hogarth C A, Bulpett R.Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA)[J]. J. Mater. Sci., 1989, 24: 3087
[29] Shen J Y, Adnot A, Kaliaguine S.An ESCA study of the interaction of oxygen with the surface of ruthenium[J]. Appl. Surf. Sci., 1991, 51: 47
[30] Hammond J S, Gaarenstroom S W, Winograd N.X-ray photoelectron spectroscopic studies of cadmium- and silver-oxygen surfaces[J]. Anal. Chem., 1975, 47: 2193
[31] McEvoy A J, Gissler W. ESCA spectra and electronic properties of some ruthenium compounds[J]. Phys. Status Solidi, 1982, 69A: k91
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[5] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[6] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[9] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[10] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[11] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[12] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[13] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[14] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.
[15] 郭巍巍,齐成军,李小武. 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究[J]. 金属学报, 2013, 49(1): 107-114.