Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1572-1578    DOI: 10.11900/0412.1961.2016.00193
  本期目录 | 过刊浏览 |
氘含量对Zr-4合金显微组织和力学性能的影响*
张诚,宋西平(),刘敬茹,杨云,尤力
北京科技大学新金属材料国家重点实验室, 北京100083
EFFECTS OF DEUTERIUM CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Zr-4 ALLOY
Cheng ZHANG,Xiping SONG(),Jingru LIU,Yun YANG,Li YOU
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
Cheng ZHANG, Xiping SONG, Jingru LIU, Yun YANG, Li YOU. EFFECTS OF DEUTERIUM CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Zr-4 ALLOY[J]. Acta Metall Sin, 2016, 52(12): 1572-1578.

全文: PDF(13380 KB)   HTML
摘要: 

采用XRD, OM, BSE, SEM和显微硬度计等手段研究了氘含量对Zr-4合金显微组织及力学性能的影响. 结果表明, 随着氘含量(质量分数)从1.35%增加到2.21%, 氘化物数量增加, 其形态及分布也发生了显著变化: 在1.35%时, 主要以晶内针状氘化物析出为主; 随着氘含量增加, 晶界块状氘化物快速增长; 当氘含量进一步增加至2.21%时, 晶界块状氘化物开始相互衔接, 并逐渐向晶内生长. 在氘含量较高的样品表层, 有一定厚度的氘化物层形成, 且层内出现微裂纹. 所形成的氘化物以δ-氘化物为主, 而高氘含量样品表面有ε-氘化物出现. 样品心部至表面存在一定的硬度梯度, 且随着氘含量的增加, 样品的硬度增加, 其相应的硬度梯度增大. 随氘含量增加, 样品的屈服强度略有增加, 而抗压强度却显著下降, 由1.35%下的1176 MPa降低到了2.21%下的856 MPa. 抗压强度的降低与组织中微裂纹有关. 样品压缩后的裂纹主要沿晶界块状氘化物形成并扩展, 因此晶界块状氘化物是材料压缩性能下降的主要原因.

关键词 锆合金,氘含量,显微组织,力学性能,氘化物    
Abstract

Zirconium alloy has been employed widely in nuclear industry, yet the absorption of deuterium in zircaloy is considered to play a critical role in mechanical properties especially in high temperature under a loss of coolant accident (LOCA) and application for deuterium storage. However, little is known about the microstructure evolution of zircaloy during deuterium absorption. In this work, deuterium was charged into the sample at 900oC and different pressures, and the effects of deuterium content on microstructure and mechanical properties of Zr-4 alloy have been studied by means of OM, BSE, SEM, XRD, and hardness and compressive tests. The results showed that the amount of deuteride increased with the increase of deuterium content from 1.35% to 2.21%, accompanying with the morphology variations from intragranular deuteride needles to intergranular deuteride blocks, which formed an interlinked deuteride configuration and grew into equiaxed α-Zr grains. Deuteride layer was observed on the surface of sample at higher deuterium content with the micro-crack appeared within it. The mostly deuteride was δ-deuteride, and ε-deuteride was observed on sample surface with high deuterium content. There existed a hardness gradient from surface to center. With the increase of deuterium content, the hardness increased and hardness gradient became evident. With increasing deuterium content, the compressive yield strength of samples in creased slightly, but the compressive ultimate strength decreased greatly from 1176 MPa (1.35%) to 856 MPa (2.21%). The deceasing of compressive ultimate strength was probably related to the formation of micro-crack. The cracks nucleated and propagated within the intergranular deuteride blocks, which leads to the degradation of compressive ultimate strength.

Key wordszircaloy,    deuterium    content,    microstructure,    mechanical    property,    deuteride
收稿日期: 2015-05-17     
基金资助:* 国家自然科学基金项目21171018和51271021资助
图1  Zr-4合金的初始组织形貌
图2  不同氘含量Zr-4合金的XRD谱
图3  不同氘含量Zr-4合金的横截面显微组织OM像
图4  吸氘Zr-4合金横截面的BSE像
图5  不同氘含量Zr-4合金截面的Vickers显微硬度分布及对应的显微组织
图6  不同氘含量Zr-4合金的压缩曲线和抗压强度曲线
图7  吸氘Zr-4合金压缩前后的BSE像
图8  Zr-H二元相图[11]
图9  Zr-4合金吸氘组织演变机制示意图
[1] Zinkle S J, Was G S.Acta Mater, 2013; 61: 735
[2] Li Z K, Liu J Z, Xue X Y.Mat-China, 2007; 26(1): 6
[2] (李中奎, 刘建章, 薛祥义. 中国材料进展, 2007; 26(1): 6)
[3] Northwood D O.Mater Des, 1985; 6: 58
[4] Motta A T, Yilmazbayhan A, Da Silva M J G, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q, Jeong Y H, Park J Y.J Nucl Mater, 2007; 371: 61
[5] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.Acta Metall Sin, 2011; 47: 865
[5] (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[6] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q.Acta Metall Sin, 2012; 48: 1103
[6] (孙国成, 周邦新, 姚美意, 谢世敬, 李强. 金属学报, 2012; 48: 1103)
[7] Allen T R, Konings R J M, Motta A T. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 49
[8] Forgeron T, Brachet J C, Barcelo F, Castaing A, Hivroz J, Mardon J P, Bernaudat C.In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, West Conshohocken, PA: ASTM International, 2000: 256
[9] Zinkle S J, Terrani K A, Gehin J C, Ott L J, Snead L L.J Nucl Mater, 2014; 448: 374
[10] Yang Y, Song X P, Zhang C.J Nucl Mater, 2015; 465: 97
[11] Zhao C, Song X P, Yang Y, Zhang B.Int J Hydrogen Energy, 2013; 38: 10903
[12] Yang Y, Song X P.Acta Metall Sin, 2016; 52: 100
[12] (杨云, 宋西平. 金属学报, 2016; 52: 100)
[13] Sidhu S S, Murthy N S, Campos F P.Adv Chem Ser, 1963; 39: 87
[14] Zuzek E, Abriata J P, San-Martin A, Manchester F D.Bull Alloy Phase Diagrams, 1990; 11: 385
[15] Qin W, Kiran Kumar N A P, Szpunar J A, Kozinski J.Acta Mater, 2011; 59: 7010
[16] Carpenter G J C.J Nucl Mater, 1973; 48: 264
[17] Pshenichnikov A, Stuckert J, Walter M.Nucl Eng Des, 2015; 283: 33
[18] Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S. J Alloys Compd#/magtechI#, 1999; 293-295: 23
[19] Kuroda M, Setoyama D, Uno M, Yamanaka S.J Alloys Compd, 2004; 368: 211
[20] Wang Z Y, Garbe U, Li H J, Studer A J, Harrison R P, Callaghan M D, Wang Y B, Liao X Z.Scr Mater, 2012; 67: 752
[21] Wang ZY, Garbe U, Li HJ, Harrison R P, Kaestner A, Lehmann E.Metall Mater Trans, 2014; 45B: 532
[22] Simpson L A, Cann C D.J Nucl Mater, 1979; 87: 303
[23] Kim Y S, Ahn S B, Cheong Y M.J Alloys Compd, 2007; 429: 221
[24] Shi S Q, Puls M P.J Nucl Mater, 1994; 208: 232
[25] Puls M P.Metall Trans, 1988; 19A: 1507
[26] Bai J B, Fran?ois D. J Nucl Mater, 1992; 187: 186
[27] Bai J B, Prioul C, Francois D.Metall Mater Trans, 1994; 25A: 1185
[28] Grange M, Besson J, Andrieu E.Metall Mater Trans, 2000; 31A: 679
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.