Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 97-106    DOI: 10.11900/0412.1961.2016.00255
  本期目录 | 过刊浏览 |
电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响
王菲,王恩刚(),贾鹏,王韬,邓安元
东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
Effect of Electromagnetic Continuous Casting on TiN Distribution and Internal Crack of Incoloy800H Alloy Billet
Fei WANG,Engang WANG(),Peng JIA,Tao WANG,Anyuan DENG
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
Fei WANG, Engang WANG, Peng JIA, Tao WANG, Anyuan DENG. Effect of Electromagnetic Continuous Casting on TiN Distribution and Internal Crack of Incoloy800H Alloy Billet[J]. Acta Metall Sin, 2017, 53(1): 97-106.

全文: PDF(7511 KB)   HTML
  
摘要: 

研究开发了Incoloy800H耐腐蚀合金立式电磁连铸制备方法,成功制备出截面为100 mm×100 mm的Incoloy800H连铸坯,并研究了其内部凝固组织、内部裂纹和TiN分布等物理现象。结果表明,常规立式连铸Incoloy800H铸坯的内部组织粗大、存在严重的内部裂纹和大量TiN夹杂物;采用立式电磁连铸后,制备的Incoloy800H合金连铸坯的中心等轴晶率从2.45%增加至41.45%,且中心等轴晶的平均晶粒尺寸由10.83 mm 减小至1.28 mm,并有效地消除了内部裂纹。TiN数量与分布的研究结果表明,立式电磁连铸条件下,铸坯中心的大尺寸TiN (大于2 μm)数量由3.71×10-4 μm-2降至1.59×10-4 μm-2,使易于诱发内裂纹的TiN数量显著减少,并抑制了TiN团簇的形成,有助于枝晶间的液态合金的补缩;另一方面,电磁连铸促使Incoloy800H合金连铸坯形成细小的等轴晶,减轻了合金元素偏析并减少了大尺寸TiN的数量,从而减少了萌发裂纹的机率,有效地抑制了内部裂纹的形成。

关键词 Incoloy800H合金电磁场裂纹TiN    
Abstract

Incoloy800H is a kind of corrosion-resistant Ni-Cr-Fe base alloy with wide application in industrial fields. Vertical continuous casting process was developed to replace conventional mould casting process to increase product rate and decrease energy consumption. However, seriously internal quality issues of the continuously cast Incoloy800H alloy have been revealed. In this work, the square billet of Incoloy800H alloy, whose cross-sectional size were 100 mm×100 mm, were successfully fabricated in vertical continuous casting process with and without electromagnetic field (EMF), and the solidification structure, TiN inclusion distribution and internal crack were investigated. The result showed, without EMF, the Incoloy800H alloy billet had some seriously internal quality issues like coarse column grains, internal cracks and large TiN inclusion. With EMF, The equiaxed grain ratio of Incoloy800H alloy billet increased from 2.45% to 41.45%, the equiaxed grain size decreased from 10.83 mm to 1.28 mm and internal cracks were eliminated. TiN is a kind of detrimental inclusion in Incoloy800H alloy billet, which can act as stress concentration sites to form cracking. Most of TiN inclusions were located at interdendritic area and formed into TiN cluster to block interdendritic feeding channel. The application of EMF reduced the number of TiN inclusion from 3.71×10-4 μm-2 to 1.59×10-4 μm-2 in the center of billet. Further analysis illustrated that the EMF can refine the equiaxed grain size, reduce the degree of element segregation and the number of large TiN inclusion, which can reduce the probability of the crack initiation and inhibit the formation of TiN cluster to enhance the interdendritic feeding, thereby remarkably reduce the internal crack in Incoloy800H alloy billet.

Key wordsIncoloy800H alloy,    electromagnetic field,    crack,    TiN
收稿日期: 2016-06-23     
基金资助:资助项目 国家自然科学基金项目No.50834009,教育部科学技术研究重大项目No.311014以及高等学校学科创新引智计划项目No.B07015
图1  常规连铸下Incoloy800H合金铸坯纵截面宏观组织及铸坯内部裂纹及其断口形貌
图2  电磁连铸的Incoloy800H铸坯纵截面宏观和显微组织
图3  常规连铸条件下Incoloy800H合金铸坯内部的夹杂物形貌
图4  常规和电磁连铸条件下铸坯内TiN在凝固组织中的分布
图5  不同连铸条件下铸坯内TiN数量上的宏观分布
图6  TiN的SEM像和EDS分析
图7  常规和电磁连铸条件下铸坯内不同位置的二次枝晶臂间距
图8  常规和电磁连铸条件下铸坯内的元素微观偏析
图9  Incoloy800H连铸坯中3种不同类型的TiN形貌和常规连铸坯内部缩孔处的TiN团簇
[1] Chen W S, Kai W, Tsay L W, et al.The oxidation behavior of three different zones of welded Incoloy 800H alloy[J]. Nucl. Eng. Des., 2014, 272: 92
[2] Tan L, Allen T R, Yang Y.Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water[J]. Corros. Sci., 2011, 53: 703
[3] Kim D J, Seo D Y, Tsang J, et al.The crack growth behavior of Incoloy 800H under fatigue and dwell-fatigue conditions at elevated temperature[J]. J. Mech. Sci. Technol., 2012, 26: 2023
[4] Kanbe Y, Ishii T, Todoroki H, et al.Prevention of longitudinal cracks in a continuously cast slab of Fe-Cr-Ni superalloy containing Al and Ti[J]. Int. J. Cast Met. Res., 2009, 22: 143
[5] Ma J, Zheng H G, Huang J, et al.An analysis on forming mechanism of longitudinal crack of N08810 corrosion resistant alloy 200 mm thickness casting slab[J]. Spec. Steel, 2012, 33(3): 61
[5] (马骏, 郑宏光, 黄坚等. N08810耐蚀合金200mm厚连铸板坯纵向裂纹形成机理的分析[J]. 特殊钢, 2012, 33(3): 61)
[6] Todoroki H, Ishii T, Mizuno K, et al. Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe-Cr-Ni super alloy cast by means of continuous casting process [J]. Mater. Sci. Eng., 2005, A413-414: 121
[7] Zeng Y P, Fan H M, Wang X S, et al. Study on micro-mechanism of crack initiation and propagation induced by inclusion in ultra-high strength steel [J]. Key Eng. Mater., 2007, 353-358: 1185
[8] Du J, Strangwood M, Davis C L.Effect of TiN particles and grain size on the charpy impact transition temperature in steels[J]. J. Mater. Sci. Technol., 2012, 28: 878
[9] Li X H, Huang F, Wang J Q, et al.Influences of TiN inclusion on corrosion and stress corrosion behaviors of alloy 690 tube in high temperature and high pressure water[J]. Acta Metall. Sin., 2011, 47: 847
[9] (郦晓慧, 黄发, 王俭秋等. TiN夹杂物对690合金管在高温高压水中的腐蚀和应力腐蚀行为的影响[J]. 金属学报, 2011, 47: 847)
[10] Tan J B, Wu X Q, Han E H, et al.Role of TiN inclusion on corrosion fatigue behavior of alloy 690 steam generator tubes in borated and lithiated high temperature water[J]. Corros. Sci., 2014, 88: 349
[11] Yan Z M, Jin W Z, Li T J.Effect of rotating magnetic field (RMF) on segregation of solute elements in CuNi10Fe1Mn alloy hollow billet[J]. J. Mater. Eng. Perform., 2012, 21: 1970
[12] Liu Z, Liu X M, Zhu T, et al.Effects of electromagnetic stirring with low current frequency on Re distribution in semisolid aluminum alloy[J]. Acta Metall. Sin., 2015, 51: 272
[12] (刘政, 刘小梅, 朱涛等. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51: 272)
[13] Zhang Q, Chen D, Sun G X, et al.Restraining effects on central defects of 1560 nickel-based alloy ingot by electromagnetic horizontal continuous casting[J]. Foundry, 2013, 62: 384
[13] (张勤, 陈定, 孙光曦等. 电磁水平连铸对1560镍基合金铸坯中心缺陷的抑制作用[J]. 铸造, 2013, 62: 384)
[14] Liu Q.Simulation of steel flow heat transfer and stress for Incoloy800 superalloy slab vertical continuous casting process [D]. Shenyang: Northeastern University, 2014
[14] (刘琦. 高温合金立式连铸流动传热和应力的模拟研究 [D]. 沈阳: 东北大学, 2014)
[15] Miki Y, Kitaoka H, Sakuraya T, et al.Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field[J]. ISIJ Int., 1992, 32: 142
[16] Fu J, Zhu J, Di L, et al.Study on the precipitation behavior of TiN in the microalloyed steels[J]. Acta Metall. Sin., 2000, 36: 801(傅杰, 朱剑, 迪林等. 微合金钢中TiN的析出规律研究 [J]. 金属学报, 2000, 36: 801)
[17] Shi Z X, Dong J X, Zhang M C, et al.Solidification characteristics and hot tearing susceptibility of Ni-based superalloys for turbocharger turbine wheel[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2737
[18] Campanella T, Charbon C, Rappaz M.Grain refinement induced by electromagnetic stirring: a dendrite fragmentation criterion[J]. Metall. Mater. Trans., 2004, 35A: 3201
[19] Liu L, Zheng H G, Ma T J, et al.Precipitation behavior of titanium nitride in alloy Ni30Cr20[J]. Spec. Steel, 2012, 33(6): 49
[19] (刘亮, 郑宏光, 马天军等. Ni30Cr20合金中氮化钛的析出行为[J]. 特殊钢, 2012, 33(6): 49)
[20] Park J H.Effect of inclusions on the solidification structures of ferritic stainless steel: computational and experimental study of inclusion evolution[J]. Calphad, 2011, 35: 455
[21] He Y J, Li Q L, Liu W.Separating effect of a novel combined magnetic field on inclusions in molten aluminum alloy[J]. Metall. Mater. Trans., 2012, 43B: 1149
[22] Wang F, Zhang L T, Deng A Y, et al.Continuous casting of Incoloy800H superalloy billet under an alternating electromagnetic field[J]. Metals, 2016, 6: 2
[23] Cockcroft S L, Degawa T, Mitchell A, et al.Inclusion Precipitation in Superalloys [A]. Superalloys 1992[C]. Champoin, Pennsylvania: TMS, 1992: 557
[24] Jia P, Wang E G, Lu H, et al.Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy[J]. Acta Metall. Sin., 2013, 49: 1573
[24] (贾鹏, 王恩刚, 鲁辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49: 1573)
[25] Eskin D G, Suyitno, Katgerman L.Mechanical properties in the semi-solid state and hot tearing of aluminium alloys[J]. Prog. Mater. Sci., 2004, 49: 629
[26] Wang X S, Liang F, Zeng Y P, et al.SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel[J]. Acta Metall. Sin., 2005, 41: 1272
[26] (王习术, 梁峰, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41: 1272)
[27] Wang C, Zeng Y P, Xie X S.Influence of characteristic inclusion parameters on crack initiation and propagation in ultra-high strength steels for aerospace application under tensile and low cyclic fatigue loading[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 557
[27] (王冲, 曾燕屏, 谢锡善. 拉伸与低周疲劳载荷作用下夹杂物特征参数对航空用超高强度钢中裂纹萌生与扩展的影响[J]. 北京科技大学学报, 2009, 31: 557)
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[5] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[12] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.