Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1259-1266    DOI: 10.11900/0412.1961.2016.00290
  本期目录 | 过刊浏览 |
Inconel 718高温合金中析出相演变研究进展*
刘永长(),郭倩颖,李冲,梅云鹏,周晓胜,黄远,李会军
天津大学材料科学与工程学院水利安全与仿真国家重点实验室, 天津 300354
RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY
Yongchang LIU(),Qianying GUO,Chong LI,Yunpeng MEI,Xiaosheng ZHOU,Yuan HUANG,Huijun LI
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
引用本文:

刘永长, 郭倩颖, 李冲, 梅云鹏, 周晓胜, 黄远, 李会军. Inconel 718高温合金中析出相演变研究进展*[J]. 金属学报, 2016, 52(10): 1259-1266.
Yongchang LIU, Qianying GUO, Chong LI, Yunpeng MEI, Xiaosheng ZHOU, Yuan HUANG, Huijun LI. RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY[J]. Acta Metall Sin, 2016, 52(10): 1259-1266.

全文: PDF(1049 KB)   HTML
  
摘要: 

Inconel 718高温合金广泛应用于航空、航天、电力和国防等领域中复杂金属结构构件的制造, 其高温抗疲劳性能和蠕变持久强度与成形加工过程中微观组织的演变密切相关. 以往的研究侧重于镍基合金热加工(如定向凝固、热处理、锻造和焊接等)工艺参数的优化, 较少从析出相控制的角度来阐明冷轧、热变形、焊接等工艺与高温服役性能之间的内在联系. 本文介绍了该合金中不同类型的析出相, 包括: 主要强化相(γ'' 相)、辅助强化相(γ' 相)、γ'' 相的平衡相(δ相), 以及MX型碳氮化物和Laves相; 论述了镍基合金制备过程中不同类型析出相的析出机制及其对合金高温性能的影响; 指出了镍基合金高能电子束焊接过程中, 焊接热影响区微裂纹形成的影响因素.

关键词 718高温合金析出相形变电子束焊蠕变性能    
Abstract

For the manufacture of complicated metallic structural components in power plants, aerospace and defense industry, Inconel 718 superalloy has been widely employed. High-temperature fatigue resistance and creep rupture strength of Inconel 718 superalloy are susceptible to the microstructure evolution in manufacture processing. Previous research work is generally focused on the parameter optimization of hot working processes (directional solidification, heat treatment, forging and welding). Relationships between the cold deformation, hot working, welding and the high-temperature mechanical performance, are seldom discussed, especially in the light of precipitate control . In this work, various types of secondary phases in Inconel 718 alloy are reviewed, including the primary strengthening phase (γ'' phase), secondary strengthening phase (γ' phase), equilibrium phase of γ'' phase (δ phase), MX-type carbonitride and Laves phase. Precipitation mechanisms of secondary phases in Inconel 718 alloy are also reviewed, as well as the effects of different types of precipitates on high-temperature performance of the Inconel 718 alloy. With respect to the high-energy electron beam welding of Inconel 718 alloys, factors contributing to the cracking in heat affected zone are indicated.

Key wordsInconel 718 superalloy    precipitate    deformation    electron beam welding    creep property Inconel
收稿日期: 2016-07-07     
ZTFLH:     
基金资助:* 国家高技术研究发展计划项目2015AA042504, 国家自然科学基金面上项目51474156以及国家杰出青年科学基金项目51325401 资助
Phase Formula Crystal structure Lattice constant / nm
γ - fcc (A1) a=0.3616
γ Ni3(Ai, Ti) fcc (L12) a=0.3589
γ Ni3Nb bct (DO22) c=0.7406 (c/a=2.04)
δ Ni3Nb Orthogonal (DOa) a=0.5141, b=0.4231, c=0.4534
MX (Nb, Ti)(C, N) fcc (B1) a=0.443~0.444
Laves (Ni, Cr, Fe)2(Nb, Mo, Ti) Hexagonal -
表1  Inconel 718高温合金主要相的晶体结构及组成[15-17]
图1  Inconel 718高温合金典型真应力-应变示意图[27]
图2  Inconel 718合金不同相的析出-温度-时间(PTT)图[33]
图3  Inconel 718合金组织中板条状δ相球化过程示意图[34]
图4  不同程度冷轧的Inconel 718合金连续加热过程中γ″相和δ相析出特征温度的变化规律[44]
图5  不同焊接速度电子束焊Inconel 718高温合金试样焊后热影响区裂纹长度统计信息[71]
[1] Guan Y S, Liu E Z, Guan X R, Liu Z.J Mater Sci Technol, 2016; 32: 271
[2] Dong J X, Liu X B, Tang B, Hu Y H, Xu Z C, Xie X S.Acta Metall Sin, 1996; 32: 241
[2] (董建新, 刘兴博, 唐宾, 胡尧和, 徐志超, 谢锡善. 金属学报, 1996; 32: 241)
[3] Zhang Y W, Hu B F.Acta Metall Sin, 2015; 51: 967
[3] (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[4] Rao G A, Kumar M, Srinivas M, Sarma D S.Mater Sci Eng, 2003; A355: 114
[5] Dong X M, Zhang X L, Du K, Zhou Y Z, Jin T, Ye H Q.J Mater Sci Technol, 2012; 28: 1031
[6] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M, Fraser H L.Acta Mater, 2009; 57: 2538
[7] Li X W, Wang L, Dong J S, Lou L H.J Mater Sci Technol, 2014; 30: 1296
[8] Ma D X.Acta Metall Sin, 2015; 51: 1179
[8] (马德新. 金属学报, 2015; 51: 1179)
[9] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J.J Mater Sci Technol, 2015; 31: 269
[10] Xu Z H, Wang Z K, Niu J, Dai J W, He L M, Mu R D.J Alloys Compd, 2016; 676: 231
[11] Bai M W, Jiang H B, Chen Y, Chen Y Q, Grovenor C, Zhao X F, Xiao P.Mater Des, 2016; 97: 364
[12] Song K, Yu K, Lin X, Yang J, Hu H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[12] (宋衎, 喻恺, 林鑫, 杨静, 胡海鸥, 黄卫东. 金属学报, 2015; 51: 935)
[13] Kirman I, Warrington D H.Metall Trans, 1970; 1A: 2667
[14] Zhao X B, Gu Y F, Lu J T, Yan J B, Yin H F.Rare Met Mater Eng, 2015; 44: 768
[14] (赵新宝, 谷月峰, 鲁金涛, 严靖博, 尹宏飞. 稀有金属材料与工程, 2015; 44: 768)
[15] Wlodek S T, Field R D.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 659
[16] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; 19A: 453
[17] Damodaram R, Raman S G S, Satyanarayana D V V, Madhusudhan R G, Prasad R K.Mater Sci Eng, 2014; A612: 414
[18] Sundararaman M, Banerjee S.Metall Mater Trans, 1992; 23A: 2015
[19] Sundararaman M, Mukhopadhyay P, Banerjee S.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 419
[20] Asadian S, Wei L Y, Warren R.Mater Charact, 2004; 53: 7
[21] Wang W Q.Aviat Manuf Eng, 1995; (7): 15
[21] (汪文迁. 航空制造工程, 1995; (7): 15)
[22] Zhou X H.Forging Technol, 2004; 29(5): 9
[22] (周晓虎. 锻压技术, 2004; 29(5): 9)
[23] Cai D Y, Zhang W H, Liu W C.Trans Nonferrous Met Soc China, 2003; 13: 1338
[24] Sellars C M, Tegart W J.Met Sci Rev Methods, 1996; 63: 731
[25] Biswas S, Reddy G M, Mohandas T, Murthy V S.J Mater Sci, 2004; 39: 6813
[26] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F.Acta Mater, 2014; 65: 270
[27] Lin Y C, Wen D X, Deng J, Chen J.Mater Des, 2014; 59: 115
[28] Findley K O, Evans J L, Saxena A.Int Mater Rev, 2011; 56: 49
[29] Garcia C I, Wang G D, Camus D E, Loria E A, De Ardo A J. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 626, 706, and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 293
[30] Ning Y Q, Fu M W, Chen X.Mater Sci Eng, 2012; A540: 164
[31] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T.Mater Sci Eng, 2014; A591: 183
[32] Wen D X, Lin Y C, Chen J, Chen X M, Zhang J L, He M.Mater Sci Eng, 2015; A620: 319
[33] Thomas A, El-Wahabi M, Cabrera J M, Prad J M.J Mater Process Technol, 2006; 177: 469
[34] Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[35] Cheng M, Zhang H Y, Zhang S H.J Mater Sci, 2012; 47: 251
[36] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.J Alloys Compd, 2009; 474: 341
[37] Nalawade S A, Sundararaman M, Singh J B, Verma A, Kishore R.Mater Sci Eng, 2010; A527: 2906
[38] Lin Y C, Li K K, Li H B, Wen D X.Mater Des, 2015; 74: 108
[39] Chen X M, Lin Y C, Wen D X, Zhang J L, He M.Mater Des, 2014; 57: 568
[40] Lin Y C, Chen X M, Wen D X, Chen M S.Comp Mater Sci, 2014; 83: 282
[41] Feng Y J.Master Thesis, Harbin Institute of Technology, 2012
[41] (冯莹娟. 哈尔滨工业大学硕士学位论文, 2012)
[42] Liu W C, Xiao F R, Yao M.Scr Mater, 1997; 37: 53
[43] Wei X P, Zheng W J, Song Z G, Lei T, Yong Q L, Xie Q C.J Iron Steel Res Int, 2014; 21: 375
[44] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.J Alloys Compd, 2015; 649: 949
[45] Wang Y.Master Thesis, Harbin Institute of Technology, 2008
[45] (王岩. 哈尔滨工业大学硕士学位论文, 2008)
[46] Lin Y C, Deng J, Jiang Y Q, Liu G.Mater Des, 2014; 55: 949
[47] Kashyap B P, Chaturvedi M C. Mater Sci Eng, 2007; A445-446: 364
[48] Huang Y, Langdon T G.J Mater Sci, 2007; 42: 421
[49] Ning Y Q, Huang S B, Fu M W, Dong J.Mater Charact, 2015; 109: 36
[50] Deng G J, Tu S T, Zhang X C, Wang J, Zhang C C, Qian X Y, Wang Y N.Eng Fract Mech, 2016; 153: 35
[51] Hu D Y, Mao J X, Song J, Meng F C, Shan X M, Wang R Q.Mater Sci Eng, 2016; A669: 318
[52] Ding T S, Zhang X C, Tu S D, Xuan F Z.Trans Mater Heat Treat, 2016; 37(4): 69
[52] (丁天胜, 张显程, 涂善东, 轩福贞. 材料热处理学报, 2016; 37(4): 69)
[53] Wang R Z, Zhang X C, Liu F, Yao L L, Tu S T.Procedia Eng, 2015; 130: 1088
[54] Chen G, Zhang Y, Xu D K, Chen X.Mater Sci Eng, 2016; A655: 175
[55] Xiao L, Chen D L, Chaturvedi M C.Mater Sci Eng, 2008; A483: 369
[56] Xiao L, Chen D L, Chaturvedi M C.Scr Mater, 2005; 52: 603
[57] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X H.Rare Met Mater Eng, 2012; 41: 1651
[57] (田素贵, 李振荣, 赵中刚, 陈礼清, 孙文儒, 刘相华. 稀有金属材料与工程, 2012; 41: 1651)
[58] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X F.Mater Sci Eng, 2012; A550: 235
[59] Caliari F R, Candioto K C G, Couto A A, Nunes C ?, Reis D A P.J Mater Eng Perform, 2016; 25: 2307
[60] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng, 2009; A510-511: 289
[61] Song H W, Guo S R, Hu Z Q.Scr Mater, 1999; 41: 215
[62] Yeh A C, Lu K W, Kuo C M, Borc H Y, Wei C N.Mater Sci Eng, 2011; A530: 525
[63] Richards N L, Chaturvedi M C.Int Mater Rev, 2000; 45: 109
[64] Damodaram R, Raman S G S, Rao K P.Mater Sci Eng, 2013; A560: 781
[65] Damodaram R, Raman S G S, Rao K P.Mater Des, 2014; 53: 954
[66] Idowu O A, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2007; A454: 389
[67] Manikandan S G K, Sivakumar D, Kamaraj M, Prasad K.Mater Sci Forum, 2012; 710: 614
[68] Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V.Mater Des, 2015; 68: 158
[69] Koleva E G, Mladenov G M, Trushnikov D N, Belenkiy V Y.J Mater Process Technol, 2014; 214: 1812
[70] Khodir S, Shibayanagi T, Takahashi M, Abdel-Aleem H, Ikeuchi K, Hidad P, Arivazhagan N.Mater Des, 2014; 60: 391
[71] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.Mater Des, 2016; 89: 964
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[10] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[11] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[12] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[13] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[14] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[15] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.