Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1259-1266    DOI: 10.11900/0412.1961.2016.00290
  本期目录 | 过刊浏览 |
Inconel 718高温合金中析出相演变研究进展*
刘永长(),郭倩颖,李冲,梅云鹏,周晓胜,黄远,李会军
天津大学材料科学与工程学院水利安全与仿真国家重点实验室, 天津 300354
RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY
Yongchang LIU(),Qianying GUO,Chong LI,Yunpeng MEI,Xiaosheng ZHOU,Yuan HUANG,Huijun LI
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
全文: PDF(1049 KB)   HTML
  
摘要: 

Inconel 718高温合金广泛应用于航空、航天、电力和国防等领域中复杂金属结构构件的制造, 其高温抗疲劳性能和蠕变持久强度与成形加工过程中微观组织的演变密切相关. 以往的研究侧重于镍基合金热加工(如定向凝固、热处理、锻造和焊接等)工艺参数的优化, 较少从析出相控制的角度来阐明冷轧、热变形、焊接等工艺与高温服役性能之间的内在联系. 本文介绍了该合金中不同类型的析出相, 包括: 主要强化相(γ'' 相)、辅助强化相(γ' 相)、γ'' 相的平衡相(δ相), 以及MX型碳氮化物和Laves相; 论述了镍基合金制备过程中不同类型析出相的析出机制及其对合金高温性能的影响; 指出了镍基合金高能电子束焊接过程中, 焊接热影响区微裂纹形成的影响因素.

关键词 718高温合金析出相形变电子束焊蠕变性能    
Abstract

For the manufacture of complicated metallic structural components in power plants, aerospace and defense industry, Inconel 718 superalloy has been widely employed. High-temperature fatigue resistance and creep rupture strength of Inconel 718 superalloy are susceptible to the microstructure evolution in manufacture processing. Previous research work is generally focused on the parameter optimization of hot working processes (directional solidification, heat treatment, forging and welding). Relationships between the cold deformation, hot working, welding and the high-temperature mechanical performance, are seldom discussed, especially in the light of precipitate control . In this work, various types of secondary phases in Inconel 718 alloy are reviewed, including the primary strengthening phase (γ'' phase), secondary strengthening phase (γ' phase), equilibrium phase of γ'' phase (δ phase), MX-type carbonitride and Laves phase. Precipitation mechanisms of secondary phases in Inconel 718 alloy are also reviewed, as well as the effects of different types of precipitates on high-temperature performance of the Inconel 718 alloy. With respect to the high-energy electron beam welding of Inconel 718 alloys, factors contributing to the cracking in heat affected zone are indicated.

Key wordsInconel 718 superalloy    precipitate    deformation    electron beam welding    creep property Inconel
收稿日期: 2016-07-07      出版日期: 2016-09-05
ZTFLH:     
基金资助:* 国家高技术研究发展计划项目2015AA042504, 国家自然科学基金面上项目51474156以及国家杰出青年科学基金项目51325401 资助

引用本文:

刘永长, 郭倩颖, 李冲, 梅云鹏, 周晓胜, 黄远, 李会军. Inconel 718高温合金中析出相演变研究进展*[J]. 金属学报, 2016, 52(10): 1259-1266.
Yongchang LIU, Qianying GUO, Chong LI, Yunpeng MEI, Xiaosheng ZHOU, Yuan HUANG, Huijun LI. RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY. Acta Metall, 2016, 52(10): 1259-1266.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00290      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1259

Phase Formula Crystal structure Lattice constant / nm
γ - fcc (A1) a=0.3616
γ Ni3(Ai, Ti) fcc (L12) a=0.3589
γ Ni3Nb bct (DO22) c=0.7406 (c/a=2.04)
δ Ni3Nb Orthogonal (DOa) a=0.5141, b=0.4231, c=0.4534
MX (Nb, Ti)(C, N) fcc (B1) a=0.443~0.444
Laves (Ni, Cr, Fe)2(Nb, Mo, Ti) Hexagonal -
表1  Inconel 718高温合金主要相的晶体结构及组成[15-17]
图1  Inconel 718高温合金典型真应力-应变示意图[27]
图2  Inconel 718合金不同相的析出-温度-时间(PTT)图[33]
图3  Inconel 718合金组织中板条状δ相球化过程示意图[34]
图4  不同程度冷轧的Inconel 718合金连续加热过程中γ″相和δ相析出特征温度的变化规律[44]
图5  不同焊接速度电子束焊Inconel 718高温合金试样焊后热影响区裂纹长度统计信息[71]
[1] Guan Y S, Liu E Z, Guan X R, Liu Z.J Mater Sci Technol, 2016; 32: 271
[2] Dong J X, Liu X B, Tang B, Hu Y H, Xu Z C, Xie X S.Acta Metall Sin, 1996; 32: 241
[2] (董建新, 刘兴博, 唐宾, 胡尧和, 徐志超, 谢锡善. 金属学报, 1996; 32: 241)
[3] Zhang Y W, Hu B F.Acta Metall Sin, 2015; 51: 967
[3] (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[4] Rao G A, Kumar M, Srinivas M, Sarma D S.Mater Sci Eng, 2003; A355: 114
[5] Dong X M, Zhang X L, Du K, Zhou Y Z, Jin T, Ye H Q.J Mater Sci Technol, 2012; 28: 1031
[6] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M, Fraser H L.Acta Mater, 2009; 57: 2538
[7] Li X W, Wang L, Dong J S, Lou L H.J Mater Sci Technol, 2014; 30: 1296
[8] Ma D X.Acta Metall Sin, 2015; 51: 1179
[8] (马德新. 金属学报, 2015; 51: 1179)
[9] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J.J Mater Sci Technol, 2015; 31: 269
[10] Xu Z H, Wang Z K, Niu J, Dai J W, He L M, Mu R D.J Alloys Compd, 2016; 676: 231
[11] Bai M W, Jiang H B, Chen Y, Chen Y Q, Grovenor C, Zhao X F, Xiao P.Mater Des, 2016; 97: 364
[12] Song K, Yu K, Lin X, Yang J, Hu H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[12] (宋衎, 喻恺, 林鑫, 杨静, 胡海鸥, 黄卫东. 金属学报, 2015; 51: 935)
[13] Kirman I, Warrington D H.Metall Trans, 1970; 1A: 2667
[14] Zhao X B, Gu Y F, Lu J T, Yan J B, Yin H F.Rare Met Mater Eng, 2015; 44: 768
[14] (赵新宝, 谷月峰, 鲁金涛, 严靖博, 尹宏飞. 稀有金属材料与工程, 2015; 44: 768)
[15] Wlodek S T, Field R D.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 659
[16] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; 19A: 453
[17] Damodaram R, Raman S G S, Satyanarayana D V V, Madhusudhan R G, Prasad R K.Mater Sci Eng, 2014; A612: 414
[18] Sundararaman M, Banerjee S.Metall Mater Trans, 1992; 23A: 2015
[19] Sundararaman M, Mukhopadhyay P, Banerjee S.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 419
[20] Asadian S, Wei L Y, Warren R.Mater Charact, 2004; 53: 7
[21] Wang W Q.Aviat Manuf Eng, 1995; (7): 15
[21] (汪文迁. 航空制造工程, 1995; (7): 15)
[22] Zhou X H.Forging Technol, 2004; 29(5): 9
[22] (周晓虎. 锻压技术, 2004; 29(5): 9)
[23] Cai D Y, Zhang W H, Liu W C.Trans Nonferrous Met Soc China, 2003; 13: 1338
[24] Sellars C M, Tegart W J.Met Sci Rev Methods, 1996; 63: 731
[25] Biswas S, Reddy G M, Mohandas T, Murthy V S.J Mater Sci, 2004; 39: 6813
[26] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F.Acta Mater, 2014; 65: 270
[27] Lin Y C, Wen D X, Deng J, Chen J.Mater Des, 2014; 59: 115
[28] Findley K O, Evans J L, Saxena A.Int Mater Rev, 2011; 56: 49
[29] Garcia C I, Wang G D, Camus D E, Loria E A, De Ardo A J. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 626, 706, and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 293
[30] Ning Y Q, Fu M W, Chen X.Mater Sci Eng, 2012; A540: 164
[31] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T.Mater Sci Eng, 2014; A591: 183
[32] Wen D X, Lin Y C, Chen J, Chen X M, Zhang J L, He M.Mater Sci Eng, 2015; A620: 319
[33] Thomas A, El-Wahabi M, Cabrera J M, Prad J M.J Mater Process Technol, 2006; 177: 469
[34] Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[35] Cheng M, Zhang H Y, Zhang S H.J Mater Sci, 2012; 47: 251
[36] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.J Alloys Compd, 2009; 474: 341
[37] Nalawade S A, Sundararaman M, Singh J B, Verma A, Kishore R.Mater Sci Eng, 2010; A527: 2906
[38] Lin Y C, Li K K, Li H B, Wen D X.Mater Des, 2015; 74: 108
[39] Chen X M, Lin Y C, Wen D X, Zhang J L, He M.Mater Des, 2014; 57: 568
[40] Lin Y C, Chen X M, Wen D X, Chen M S.Comp Mater Sci, 2014; 83: 282
[41] Feng Y J.Master Thesis, Harbin Institute of Technology, 2012
[41] (冯莹娟. 哈尔滨工业大学硕士学位论文, 2012)
[42] Liu W C, Xiao F R, Yao M.Scr Mater, 1997; 37: 53
[43] Wei X P, Zheng W J, Song Z G, Lei T, Yong Q L, Xie Q C.J Iron Steel Res Int, 2014; 21: 375
[44] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.J Alloys Compd, 2015; 649: 949
[45] Wang Y.Master Thesis, Harbin Institute of Technology, 2008
[45] (王岩. 哈尔滨工业大学硕士学位论文, 2008)
[46] Lin Y C, Deng J, Jiang Y Q, Liu G.Mater Des, 2014; 55: 949
[47] Kashyap B P, Chaturvedi M C. Mater Sci Eng, 2007; A445-446: 364
[48] Huang Y, Langdon T G.J Mater Sci, 2007; 42: 421
[49] Ning Y Q, Huang S B, Fu M W, Dong J.Mater Charact, 2015; 109: 36
[50] Deng G J, Tu S T, Zhang X C, Wang J, Zhang C C, Qian X Y, Wang Y N.Eng Fract Mech, 2016; 153: 35
[51] Hu D Y, Mao J X, Song J, Meng F C, Shan X M, Wang R Q.Mater Sci Eng, 2016; A669: 318
[52] Ding T S, Zhang X C, Tu S D, Xuan F Z.Trans Mater Heat Treat, 2016; 37(4): 69
[52] (丁天胜, 张显程, 涂善东, 轩福贞. 材料热处理学报, 2016; 37(4): 69)
[53] Wang R Z, Zhang X C, Liu F, Yao L L, Tu S T.Procedia Eng, 2015; 130: 1088
[54] Chen G, Zhang Y, Xu D K, Chen X.Mater Sci Eng, 2016; A655: 175
[55] Xiao L, Chen D L, Chaturvedi M C.Mater Sci Eng, 2008; A483: 369
[56] Xiao L, Chen D L, Chaturvedi M C.Scr Mater, 2005; 52: 603
[57] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X H.Rare Met Mater Eng, 2012; 41: 1651
[57] (田素贵, 李振荣, 赵中刚, 陈礼清, 孙文儒, 刘相华. 稀有金属材料与工程, 2012; 41: 1651)
[58] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X F.Mater Sci Eng, 2012; A550: 235
[59] Caliari F R, Candioto K C G, Couto A A, Nunes C ?, Reis D A P.J Mater Eng Perform, 2016; 25: 2307
[60] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng, 2009; A510-511: 289
[61] Song H W, Guo S R, Hu Z Q.Scr Mater, 1999; 41: 215
[62] Yeh A C, Lu K W, Kuo C M, Borc H Y, Wei C N.Mater Sci Eng, 2011; A530: 525
[63] Richards N L, Chaturvedi M C.Int Mater Rev, 2000; 45: 109
[64] Damodaram R, Raman S G S, Rao K P.Mater Sci Eng, 2013; A560: 781
[65] Damodaram R, Raman S G S, Rao K P.Mater Des, 2014; 53: 954
[66] Idowu O A, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2007; A454: 389
[67] Manikandan S G K, Sivakumar D, Kamaraj M, Prasad K.Mater Sci Forum, 2012; 710: 614
[68] Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V.Mater Des, 2015; 68: 158
[69] Koleva E G, Mladenov G M, Trushnikov D N, Belenkiy V Y.J Mater Process Technol, 2014; 214: 1812
[70] Khodir S, Shibayanagi T, Takahashi M, Abdel-Aleem H, Ikeuchi K, Hidad P, Arivazhagan N.Mater Des, 2014; 60: 391
[71] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.Mater Des, 2016; 89: 964
[1] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[2] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[3] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[4] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[5] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[6] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[7] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[8] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[9] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[10] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[11] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[12] 于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
[13] 王文辉,吴迪,陈荣石,娄长胜. 高温短时间时效处理对Mg-3Nd-1Zn合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 567-574.
[14] 白敬胜,卢秋虹,卢磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为*[J]. 金属学报, 2016, 52(4): 491-496.
[15] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.