Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1142-1152    DOI: 10.11900/0412.1961.2016.00030
  论文 本期目录 | 过刊浏览 |
交流电和微生物共同作用下Q235钢的腐蚀行为*
卿永长1,杨志炜1,鲜俊2,许进1,闫茂成1,吴堂清3,于长坤1,于利宝1,孙成1()
1 中国科学院金属研究所, 沈阳 110016
2 新疆油田油气储运分公司, 克拉玛依 834002
3 湘潭大学材料设计及制备技术湖南省重点实验室, 湘潭 411105

CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS
Yongchang QING1,Zhiwei YANG2,Jun XIAN2,Jin XU1,Maocheng YAN1,Tangqing WU3,Changkun YU1,Libao YU1,Cheng SUN1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China
3 Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
引用本文:

卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
Yongchang QING, Zhiwei YANG, Jun XIAN, Jin XU, Maocheng YAN, Tangqing WU, Changkun YU, Libao YU, Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS[J]. Acta Metall Sin, 2016, 52(9): 1142-1152.

全文: PDF(1531 KB)   HTML
摘要: 

采用微生物分析方法研究了交流电(均方根电流密度50 A/m2, 频率50 Hz)对土壤浸出液中硫酸盐还原菌(sulfate reducing bacteria, SRB)的生理影响; 通过开路电位、动电位极化曲线、电化学阻抗谱等方法研究了交流电和微生物共同作用对Q235钢的电化学行为的影响; 利用SEM观测了试样表面腐蚀产物和腐蚀微观形貌. 结果表明, 均方根电流密度为50 A/m2, 频率为50 Hz的正弦交流电对SRB的生理未造成很大影响, 但交流电的交变电场降低了微生物膜的吸附性, 促进了微生物膜的脱附. 实验前期, 活性生物膜抑制金属腐蚀, 实验后期, 微生物代谢产物促进金属腐蚀. 金属在交流电作用下, 由于整流效应、交变电场作用以及点蚀的自催化效应等, 腐蚀速率加快, 腐蚀产物疏松.

关键词 交流腐蚀硫酸盐还原菌(SRB)电化学微生物腐蚀整流效应    
Abstract

With the rapid development of electricity and transport industry, more and more buried pipelines are parallel or cross to the high voltage transmission line and the electrified railway. In this work, microbiological analysis method was used to investigate the effect of alternating current (AC) on the physiology of sulfate reducing bacteria (SRB). Electrochemical methods, including open circuit potential, potentiondynamic polarization curves and electrochemical impedance spectroscopy (EIS) on Q235 steel samples, were performed in soil leaching solution to study the electrochemical behavior with the presence or absence of AC and SRB. The corrosion morphology was observed by scanning electron microscopy (SEM). The results indicate that the AC which current density is 50 A/m2 and frequency is 50 Hz has only a small impact on the growth of SRB, but its alternating electric field can reduce the adsorption and promote the desorption of the biofilm. During the initial experiment, the active biofilm can inhibit the corrosion of Q235 steel due to the electronegativity and the physical barrier, but the microbial metabolites would promote the corrosion during the later experiment without active biofilm. AC can improve the corrosion rate and lead the corrosion products loose because of the rectifying effect, the alternating electric field and the self catalytic effect of pitting corrosion.

Key wordsAC corrosion    sulfate reducing bacteria (SRB)    electrochemistry    microbiologically influenced corrosion (MIC)    rectification effect
收稿日期: 2016-01-18     
基金资助:* 国家自然科学基金重点项目51471176和51131001, 以及国家科技基础条件平台–国家材料环境腐蚀平台项目2005DKA10400资助
图1  实验测试装置示意图
图2  有菌实验中细菌数量随时间的变化
图3  第15 d实验结束后各实验组腐蚀产物形貌
Area Element
C O Si Fe P S Ca K
Blank (A) 35.13 43.80 0.68 20.39 - - - -
Inoculation (B) 13.96 38.34 - 33.38 11.89 1.28 - 1.15
Under AC effect (C) 33.21 37.63 0.82 28.35 - - - -
Inoculation under AC effect (D) 26.36 33.32 - 28.72 4.99 5.22 1.40 -
表1  各实验试样腐蚀产物的EDS分析结果
图4  各实验组Q235钢表面腐蚀微观形貌SEM像
图5  各实验组开路电位随时间的变化
图6  交流电接菌试样随时间变化的极化曲线
图7  第2 d和第10 d各实验组的极化曲线
Time Ecorr icorr βa βc
mV μAcm-2 mVdec-1 mVdec-1
2 h -0.825 7.297 130.667 300.786
2 d -0.749 2.019 182.506 473.378
5 d -0.829 7.717 132.078 250.546
10 d -0.804 14.040 280.998 369.902
15 d -0.760 5.417 121.429 316.603
表2  交流电接菌试样极化曲线的拟合结果
表3  第2 d各实验组极化曲线的拟合结果
表4  第10 d各实验组极化曲线的拟合结果
图8  各实验组第2 d和第10 d的腐蚀电流密度
图9  交流电接菌试样的Nyquist和Bode图
表5  交流电接菌试样EIS拟合结果
图10  第2 d各实验组的Nyquist和Bode 图
图11  第10 d各实验组的Nyquist和Bode图
图12  EIS拟合等效电路图
[1] Wakelin R G, Gummow R A, Segall S M.Corrosion-1998, Houston: NACE, 1998: 565
[2] Collet E, Delores B, Gabillard M, Ragault I.Anti-Corros Method M, 2001; 48: 221
[3] Heim G, Heim T, Heinzen H, Schwenk W.3R Int, 1993; 32: 246
[4] Fu A Q, Cheng Y F.Corros Sci, 2010; 52: 612
[5] Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2010; 52: 916
[6] Williams J F.Mater Prot Perform, 1966; 5: 52
[7] Radeka R, Zorovic D, Barisin D.Anti-Corros Method M, 1980; 27: 13
[8] Bertocci U.Corrosion, 1979; 35: 211
[9] Chin D, Sachdev P.J Electrochem Soc, 1983; 130: 1714
[10] Jiang Z T, Du Y X, Dong L, Lu M X.Acta Metall Sin, 2011; 47: 997
[10] (姜子涛, 杜艳霞, 董亮, 路民旭. 金属学报, 2011; 47: 997)
[11] Yang Y, Li Z L, Wen C.Acta Metall Sin, 2013; 49: 43
[11] (杨燕, 李自力, 文闯. 金属学报, 2013; 49: 43)
[12] Zhu M, Liu Z Y, Du C W, Li X G, Wang L Y.J Mater Eng, 2015; 43: 85
[12] (朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 材料工程, 2015; 43: 85)
[13] Haring H E. J Electrochem Soc, 1952; 99: 30
[14] McCollum B, Ahlborn G H.T Am Inst Elect Eng, 1916; 35: 301
[15] Kulman F E.Corrosion, 1961; 17: 34
[16] Cao C N.Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 53
[16] (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 53)
[17] Panossian Z, Filho S, Almeida N D, Filho M P, Silva D L, Laurino E, Oliver J L, Pimenta G S, Albertini J C.Corrosion-2009,Houston: NACE, 2009: 541
[18] Nielsen L V, Galsgaard F. Corrosion-2004,Houston: NACE, 2005: 211
[19] Javaherdashti R.Anti-Corros Method M, 1999; 46: 173
[20] Von Wolzogen Kuhr C.Corrosion, 1961; 17: 293t
[21] Iverson W P.Nature, 1968; 217: 1265
[22] Venzlaff H, Enning D, Srinivasan J, Mayrhofer K J, Hassel A W, Widdel F, Stratmann M.Corros Sci, 2013; 66: 88
[23] Su W T, Zhang L X, Tao Y, Zhan G Q, Li D X, Li D P.Electrochem Commun, 2012; 22: 37
[24] Xu H W, Zhang X, Yang S S, Li G H. Environ Sci, 2009; 30: 1931
[24] (徐慧纬, 张旭, 杨姗姗, 李广贺. 环境科学, 2009; 30: 1931)
[25] Song B, Hou Y L, Ding X.Sci Technol Food Ind, 2013; 34(11): 111
[25] (宋波, 侯怡铃, 丁祥. 食品工业科技学报, 2013; 34(11): 111)
[26] Rowley B A.Exp Biol Med, 1972; 139: 929
[27] Zhong F L, Cao H B, Li X G. China Environ Sci, 2003; 23: 243
[27] (钟方丽, 曹宏斌, 李鑫钢. 中国环境科学, 2003; 23: 243)
[28] Liu J, Zheng J S, Xu L M.Corros Sci Prot Technol, 2002; 14: 23
[28] (刘靖, 郑家燊, 许立铭. 腐蚀科学与防护技术, 2002; 14: 23)
[29] Sun C, Xu J, Wang F H.Ind Eng Chem Res, 2011; 50: 12797
[30] Xu J, Sun C, Yan M C, Wang F H.Corrosion, 2014; 70: 686
[31] Xu J, Wang K X, Sun C, Wang F H, Li X M, Yang J X, Yu C K.Corros Sci, 2011; 53: 1554
[32] Wu T Q, Yan M C, Zeng D C, Xu J, Yu C K, Sun C, Ke W.Acta Metal Sin (Eng Lett), 2015; 28: 93
[33] Liu H Q, Wan Y, Zhang D, Hou B R.Corros Prot, 2011; 32: 81
[33] (刘怀群, 万逸, 张盾, 侯保荣. 腐蚀与防护, 2011; 32: 81)
[34] Gonzalez J, Santana A F, Mirza-Rosca J C.Corros Sci, 1998; 40: 2141
[35] Zuo R, Kus E, Mansfeld F, Wood T K.Corros Sci, 2005; 47: 279
[36] Dunne W M.Clin Microbiol Rev, 2002; 15: 155
[37] Hong S H, Jeong J, Shim S, Kang H, Kwon S, Ahn K H, Yoon J.Biotechnol Bioeng, 2008; 100: 379
[38] Yu L, Duan J Z, Du X Q, Huang Y L, Hou B R.Electrochem Commun, 2013; 26: 101
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[4] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[7] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[8] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[9] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[10] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[11] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[12] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[13] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
[14] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[15] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.